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Preface

This book arose out of an introductory course in astronomy and astrophysics
that I have offered several times at the Indian Institute of Technology, Kanpur.
It is aimed at sophomore or junior level students, assuming that they have
done a basic one-year coursework in mathematics and physics. I personally
find astronomy to be a very interesting subject and hope that I have been
able to share some of this enthusiasm in my book. Everyone is fascinated
and intrigued by the heavens and look forward to an opportunity to get a
deeper understanding about their nature. It is absolutely remarkable that we
can comprehend the heavens in terms of the basic laws of physics. Hence
besides providing a basic description of the heavenly objects, an introductory
book on this subject must also relate their properties to the fundamental laws
of physics. This makes the subject somewhat challenging. At the same time
one gets a much better appreciation of these laws by learning their direct
application to astronomical objects. In this book I have tried to explain the
application of physical laws to astronomy and astrophysics to the best of my
abilities. In many cases these applications are quite subtle and may require a
careful reading before they can be appreciated. I have also briefly introduced
basic concepts in physics and mathematics wherever they are required.

The book is relatively concise and does not attempt to cover all possible
topics. I have tried to focus on basic ideas and have provided sufficient details
so that the reader can appreciate the subject and be ready for advanced
coursework. I have gone into considerable detail for some chosen topics which
I thought were important and could be explained at this level. In other cases
I have only provided a glimpse into the basic ideas and the reader is expected
to consult other sources for a proper understanding.

The book can be used for a one- or a two-semester course in astronomy and
astrophysics. It is not possible to cover all the topics in one semester. Hence if
it is used for a one-semester course, some of the topics have to be skipped. In
order to save time, it is possible to omit some mathematical derivations with-
out distorting the logical flow of the subject. My experience has shown that
students find cosmology particularly interesting and hence it should preferably
be included. In any case, I feel that a proper introduction to the subject re-
quires two semesters of coursework. If possible, the course should also provide
some hands-on experience with observing the night sky and analyzing astro-
nomical data. For this purpose several excellent web resources are available.

I acknowledge considerable help from Roshan Bhaskaran in preparing fig-
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ures for the book. I have also made extensive use of the software Stellarium
in some of the chapters and thank its developers for producing such a useful
software. Finally, I would like to thank the scientific staff members of orga-
nizations, such as NASA; European Southern Observatory; Institute for So-
lar Physics, Stockholm, Sweden; High Altitude Observatory; Yohkoh Legacy
Archive; and the National Radio Astronomy Observatory for producing fasci-
nating astrophysical images and making them available publically.



Chapter 1

Introduction

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scales and Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Night Sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Constellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Earth, Sun, and the Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Retrograde Motion of Planets . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Sidereal Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Astronomical Catalogs and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Overview

The Universe is fascinating. Starting in ancient times, people have wondered
about the nature of stars and how they might affect our lives. Our knowledge
about them has progressed with time, often assisted by advances in fundamen-
tal science. For example, in the nineteenth century, the source of solar energy
was believed to be the gravitational potential energy and perhaps the chemical
energy. These were the only possibilities known at that time. It was only later,
after the discovery of nuclear fusion, that scientists realized that the Sun is
powered by nuclear energy. At present we are exploring the Universe in great
detail with very sophisticated instruments. This has led to a huge amount of
very precise data on various astronomical structures. The data has provided
us with in-depth knowledge and understanding of the Universe on different
length scales. Hence we are now able to construct detailed models, assisted by
computer simulations, of objects such as stars, stellar clusters, galaxies etc.
The branch of science that aims to understand the physics and chemistry of
such heavenly objects is called Astrophysics. This field has seen remarkable
developments in the last century and has now reached the level of a precision
science.

The Universe contains structures on a wide range of scales. These include
the solar system and the planetary systems associated with other stars. The
stars themselves often form clusters that are part of bigger structures called
galaxies. Furthermore, the galaxies are also not found in isolation and form
groups or clusters of galaxies that form larger clusters called superclusters. The
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2 An Introduction to Astronomy and Astrophysics

superclusters are the largest structures observed. The size of the observable
Universe is roughly 50 times larger than the size of the largest supercluster.

The Universe is continuously evolving. The planets and the stars, which
appear to us as everlasting, originated at some time in the past. The stars
evolve with time, slowly exhaust their nuclear fuel, and eventually die. Simi-
larly, the galaxies also have an origin and slowly evolve into the structures we
observe today. It is conceivable that the entire Universe also had an origin.
The model that appears to best describe the origin and evolution of the Uni-
verse is called the Big Bang model. This model postulates that the Universe
was initially very small in size. It was also very hot and dense and consisted
predominantly of radiation and plasma, that is, charged particles such as elec-
trons and protons. With time it expanded, cooled, and its density decreased.
At some stage the Universe was cool enough to allow formation of the atomic
nuclei of a few light elements. At this time the Universe was opaque to pho-
tons, which could travel only a very short distance before being scattered or
absorbed by an electron or a proton. As it cooled further, neutral atoms be-
gan to form. The photons do not interact as strongly with atoms as they do
with free electrons and ions. Hence around that time, the photons could travel
freely in the Universe. The Universe became transparent and electromagnetic
radiation, such as visible light, was able to propagate large distances through
space. As it cooled further, structures such as galaxies, clusters of galaxies,
and stars started forming due to gravitational attraction. The Universe slowly
evolved into the present state observable today.

1.2 Scales and Dimensions

We next give a brief overview of the scales and dimensions of various objects
and structures in the Universe. Let’s start with the Earth. The radius, RE ,
and mass, ME , of the Earth are

RE = 6378 Km ,

ME = 5.974× 1024 Kg .

In comparison, the Sun is about a million times more massive with about 100
times larger radius:

RS = 6.96× 105 Km ,

MS = 1.989× 1030 Kg .

The Earth-Sun distance is called one Astronomical Unit (AU),

1 AU = 1.496× 108 Km .



Introduction 3

The Sun is the nearest star. The next nearest star is Proxima Centauri, at a
distance of 1.31 pc. Here, pc denotes parsec and is given by

1 pc ≈ 3× 1013 Km .

Hence, the next nearest star is roughly 200,000 times the distance to the Sun.

Sun

Moon

θ

Earth

FIGURE 1.1: The angle, θ, subtended by the Sun at Earth is approximately
the same as that subtended by the Moon on Earth.

Using the information given above, we can compute the angle θ subtended
by the Sun’s diameter at Earth. We find

θ =
2× 6.96× 106

1.496× 108
= 0.0093 radians .

This is roughly equal to 0.5 degrees. Coincidently, this also happens to be
roughly the angle subtended by the Moon on Earth (see Figure 1.1), although
its distance and size is very different from that of the Sun. If the angle sub-
tended by the Moon had been much smaller, we would not have been able to
observe the spectacular phenomena of solar eclipses.

As we have already mentioned, stars are not uniformly distributed in the
sky but are found to occur in clusters called galaxies. Galaxies are organized
structures, with a high density of matter near the center. Many galaxies show
evidence of rotation about the center. A typical galaxy contains billions of
stars. For example, we are part of the Milky Way galaxy, which consists of
over 200 billion stars. The Milky Way is a spiral galaxy and forms a disk-
like structure with a disk diameter of about 30 Kpc (1 Kpc = 1,000 pc) and
disk thickness of 1 Kpc (see Figure 1.2). Near the center of the galaxy the
density of matter and stars is very high. Here the Milky Way galaxy displays
a ellipsoidal bulge-like structure with the major axis equal to a few Kpc. The
Sun is located at a distance of about 8 Kpc from the center of the galaxy. The
Milky Way is visible as a white band stretching across the night sky, provided
one does not have too much city light pollution. Because we are located inside
the Milky Way, we cannot see its spiral structure. In order to observe the
spiral arms, we require a view from above or below the disk. Surrounding the
disk is a nearly spherically symmetric structure called the galactic halo. Here
the density of matter is much lower than the disk.

The observable Universe contains on the order of 100 billion galaxies. The
typical distance scale of galaxy clusters ranges from 1 to 10 Mpc (1 Mpc =
1 million pc) and that of superclusters is about 10 to 100 Mpc. Superclusters
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are the largest structures seen in the Universe. If we take a broad-brush view
of the Universe at distance scale much larger than 100 Mpc, the Universe
appears to be uniform, that is, on average the distribution of matter is the
same in all directions and positions. The size of the observable Universe is on
the order of a few Gpc (1 Gpc = 109 pc).

30 Kpc

Halo

Central Bulge

Galactic Disk Sun

8 Kpc

FIGURE 1.2: A schematic illustration of the Milky Way. The diameter of
the galactic disk is about 30 Kpc while its thickness is about 1 Kpc. The Sun
is located roughly 8 Kpc from the center of the galaxy. The halo extends to
much larger distances beyond the disk.

Let us recall that light travels at a finite speed, which is equal to c =
2.998 × 108 m/s . It takes light about 8 minutes to reach us from the Sun.
In general, the light that we receive from an object at distance D left the
object at time D/c ago. The next nearest star is located at a distance of
1.31 pc. Besides parsec, another convenient unit of distance in astronomy is
a light year. This is defined as the distance that light travels in 1 year. The
relationship between parsec and light year is given by

1 pc = 3.26 light years . (1.1)
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Hence the next nearest star is 4.3 light years away. This means that light
takes 4.3 years to reach us from this star. Similarly, light we receive from
the Andromeda galaxy, located at a distance of about 1 Mpc, left this galaxy
about 3 million years ago. The current best estimate of the age of the Universe
is about 14 Giga years (1 Giga year = 109 years). Hence the farthest we can
observe today is the distance that light travels in this time. This distance is
equal to 14 Giga light years, which is approximately equal to 4 Gpc. This
provides us with an estimate of the size of the observable Universe.

The Universe changes slowly with time. All structures in the Universe, such
as stars, galaxies, galaxy clusters, undergo evolution. For most astronomical
objects this evolution is very slow and we are unable to directly observe it.
However this evolution can be observed indirectly. For example, we observe
different types of stars, such as main sequence stars, red giants, white dwarfs
etc. By the theory of stellar evolution, we deduce that these represent differ-
ent stages of evolution of stars. Hence by observing a red giant star of mass
approximately equal to 1 solar mass (MS), we can see how the Sun, which
is currently a main sequence star, might appear during the late stages of its
life cycle. Furthermore, due to the finite speed of light, as we see objects that
are very far away from us, we see them at much earlier times. The far away
objects, therefore, give us a glimpse of the Universe in its early stage of evo-
lution. For example, as we observe objects at a distance of 1 Gpc, we are
effectively observing how the Universe appeared 3.26 billion years ago.

1.3 Night Sky

In order to gain a proper appreciation of astronomy, a person should become
familiar with the night sky. Unfortunately with the high pollution levels and
lights in cities, the number of stars visible is relatively small. In order to get
a better view, it is useful to go to the countryside.

The night sky is continuously changing due to the rotation of the Earth
about its axis. The stars appear to move from east to west. This apparent
motion of stars is due to rotation of the Earth. The stars themselves remain
approximately fixed with respect to the Sun. The Earth rotates about an axis,
which is perpendicular to the equatorial plane, as shown in Figures 1.3 and
1.4. The equatorial plane separates the northern and southern hemispheres
and passes through the Earth’s equator. The sense of rotation of Earth is
from west to east. Due to this rotation, the Sun and all the stars appear to
rise from the east and set in the west. Furthermore, the night sky also changes
due to the revolution of the Earth around the Sun. The plane of revolution
around the Sun is inclined at an angle of about 23.5o with respect to the
equatorial plane. This plane is called the ecliptic plane, as shown in Figure
1.5. The sense of revolution of the Earth is also from west to east.
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Axis of rotation
Axis of revolution

Earth

Equator

Plane of revolution

θ

FIGURE 1.3: The axis of rotation of the Earth is perpendicular to the
equatorial plane. The plane of revolution of the Earth around the Sun is
inclined at an angle θ = 23.5o with respect to the equatorial plane.

Axis of revolution

Sun

Equatorial
Ecliptic plane

plane

Axis o
f ro

tation

θ

Earth

FIGURE 1.4: The plane of revolution of the Earth around the Sun is called
the ecliptic plane.

The Sun lies in different directions with respect to the Earth at different
times of the year, as shown in Figure 1.5. Hence during night time we get
a different view of the sky on different dates. For example, in the northern
hemisphere, some of the prominent stars in summer are Vega, Altair, and
Deneb, whereas in winter the prominent stars are Capella, Betelgeuse, Sirius,
etc.
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γ

Winter Solstice

Ecliptic Plane

Vernal Equinox

Summer Solstice

Autumnal Equinox

E

S

FIGURE 1.5: The orbit of revolution of the Earth around the Sun lies in a
plane, called the ecliptic plane. The position of Earth at four different times
is shown. The axis of rotation of Earth as well as the equatorial plane are
also shown in the figure. The Sun as viewed from Earth at the time of vernal
equinox lies in a direction in space, also called the vernal equinox.

As we view the night sky we can see a large variety of objects such as
stars, planets, shooting stars or meteors, meteorites, comets, or an artificial
satellite. A star is approximately fixed in space. It appears to move only due
to the motion of the observer on Earth. However, its position relative to other
stars or with respect to the Sun does not show much change over a period of
days or even a year. It changes at a very slow rate due to the proper motion of
stars. A planet moves around the Sun in an elliptical orbit. Hence its position
changes significantly with respect to the background fixed stars.

There also exist many interesting phenomena caused by smaller objects
in the solar system called meteoroids. These objects may sometimes enter
the Earth’s atmosphere at high speeds on the order of 10 to 75 Km/s. Due to
friction, they heat up and become illuminated at an altitude of about 100 Km.
A small meteoroid lasts a very short time interval. It produces a short streak
of light that is called a meteor or a shooting star. The smallest meteoroid
that can lead to a meteor observable by the naked eye has a mass of about
1 gram. Normally one sees some isolated meteors. On some dates one might
see a meteor shower, containing a large number of meteors, which appear to
diverge from a small region called the radiant. This happens when the Earth
crosses some dusty regions in the solar system and hence undergoes collision
with a large number of meteoroids. If the mass of the meteoroid exceeds 1 Kg,
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then it might survive until it reaches ground level. The resulting fragment is
called a meteorite.

Another fascinating object that might be seen in the night sky is a comet.
However, most of these are too dim to be seen by the naked eye. On average,
one might be bright enough to be observable without a telescope every 10
years. They consist of a nucleus and a tail. The nuclei are composed of ice,
rock, and dust and have diameters ranging from a few hundred meters to tens
of kilometers. Comets move in a highly eccentric orbit around the Sun and
are illuminated by sunlight.

1.4 Constellations

The stars are grouped into different constellations. Historically, these group-
ings were made on the basis of some figure these groups of stars appear to
resemble. The choice of these figures was made entirely on the basis of human
imagination. Constellations played an important role in ancient times because
they were very useful for navigation. A person trained in reading the night
sky could use them to identify different directions.

FIGURE 1.6: The Orion constellation, named after the mythological hunter,
Orion. The brightest stars in this constellation are Rigel and Betelgeuse.

There are a large number of mythological stories associated with stars
and constellations. Most civilizations have their own stories. Historically, they
probably played an important role because they provided mnemonic devices
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to help recognize the different constellations. They also make the night sky
become alive. Instead of just viewing stars, one now sees gods, goddesses,
saints, warriors, nymphs, etc. in the night sky. It is filled with drama, action,
and poetry.

Here we relate one story from Greek mythology. In the star cluster, Plaei-
des, the seven stars were originally seven sisters, daughters of the god Atlas
and goddess Pleione. Once they were enjoying a walk in a forest with their
friend, Artemis, the goddess of the Moon. Orion, the great hunter, happened
to notice them and started to chase them. In order to save the seven sisters,
Artemis asked the god Zeus for help. Zeus turned all of them into doves so
that they could fly away. The sisters flew very high up in the sky and even-
tually became the Plaeides star cluster. This did solve the problem but was
not quite what Artemis wanted. She became very unhappy because she had
lost her good friends. Since Orion was responsible for all this, she decided to
get even with him. With the help of her brother Apollo, she had Orion killed
by a giant scorpion. Zeus then decided to put Orion up in the heavens by the
side of the Plaeides sisters. As the stars move from east to west, Orion still
appears to be chasing the sisters in the night sky. Furthermore Artemis, being
the goddess of the Moon, gets to visit her friends sometimes in the sky. Fi-
nally, the giant scorpion became the constellation Scorpio. Scorpio rises from
the east as soon as Orion sets in the west. So they are kept as far apart as
possible.

FIGURE 1.7: The Leo constellation which roughly appears as a lion. The
brightest stars in this constellation are Regulus and Beta Leonis.

The constellation boundaries were made precise by the International As-
tronomical Union (IAU) in 1928. The entire sky was divided into 88 constel-
lations. The boundaries were chosen on the basis of constant right ascension
and declination using the equatorial coordinate system based on epoch B1875.
The precise definition of this system is given in chapter 3. The coordinate sys-



10 An Introduction to Astronomy and Astrophysics

tem is updated every 50 years in order to account for the precession of the
Earth’s rotation axis. Hence, these boundaries do not correspond to constant
right ascension and declination in the equatorial system, J2000, currently in
use. These constellations play an extremely important role if one wants to
recognize a particular star in the sky. A person trained in recognizing the
constellations can identify a star even if he/she does not know its precise
coordinates. Some examples of the constellations are Andromeda, Aries, Cen-
taurus, Cygnus, Orion, etc.

FIGURE 1.8: The Gemini constellation takes the shape of twins standing
next to one another. Gemini is the Latin word for twins. The two brightest
stars in this constellation are named after the twins, Pollux and Castor, in
Greek mythology.

FIGURE 1.9: The Ursa Major constellation is also called the Great Bear. It
contains seven bright stars seen in the upper left region of this figure. These are
easily identifiable in the night sky and are collectively called the Big Dipper.
These stars are also helpful in locating the North Star.
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In Figures 1.6 through 1.9, we show some of the prominent constellations
visible in the Northern hemisphere at different times of the year. We encour-
age the readers to view the night sky in order to identify some prominent
constellations at their location. The stars in each constellation are labeled by
the Greek letters α, β, γ depending on their brightness. For example, Vega,
the brightest star in constellation Lyra, is denoted α Lyr. However, there
are many exceptions to this rule, perhaps because the data on some of the
stars were not available precisely at the time of this nomenclature. Hence in
many cases, a star labeled as α is not the brightest star in the corresponding
constellation.

1.5 Earth, Sun, and the Solar System

The Sun and all the planets in the solar system are shown schematically in
Figure 1.10 in the order of their distance from the Sun. Hence the closest
planet from the Sun is Mercury and the farthest is Neptune. Mercury is also
the smallest planet while Jupiter is the largest.

All the planets revolve around the Sun in approximately circular orbits.
The orbits of all the other planets also lie very close to the ecliptic plane.
Hence the entire solar system forms a nearly planar structure, with the Sun
at its center. The sense of revolution of all the planets is also the same as
that of Earth. They all revolve from west to east. The trajectory of a planet
appears very simple if viewed by an observer located at the Sun. However, it
appears complicated if viewed from Earth.

Sun

Mercury Venus Earth Mars

Jupiter Saturn
Uranus Neptune

FIGURE 1.10: The Sun along with the eight planets. The distance and size
is not shown to scale. However, the true order of the size and distance from
the Sun corresponds to the order shown in figure.

As discussed earlier, the equatorial plane of Earth is inclined at an angle
of about 23.5o to the ecliptic plane, as shown in Figure 1.4. The seasons are
caused by this inclination. On March 21, the Sun’s rays are directly overhead
at the equator. This event and the corresponding position of the Sun is called
spring or vernal equinox, as shown in Figure 1.5. During summer months
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the Sun is overhead at the northern latitudes. On June 21, it is overhead at
the Tropic of Cancer, which is 23.5o north. This is the maximum northward
motion of the Sun. On September 22, the Sun’s rays are again overhead at
the equator. Eventually on December 21, it reaches farthest south.

Earth

Mars

East

West

1

23
45

6
7 1

2
3

4
567

FIGURE 1.11: The retrograde motion of Mars, as seen from Earth, with
respect to the fixed background stars. Mars normally appears to move from
west to east. However, when it approaches Earth, it appears to move backward,
makes a loop, and then again resumes its normal motion toward the east.

1.5.1 Retrograde Motion of Planets

Let’s consider the motion of a planet relative to the fixed background stars.
This is convenient because it eliminates the effect of the rotation of Earth.
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Relative to the background stars, the planets appear to move in one direction
and then may change direction for some time and again start moving in their
original direction. Hence, for some time, they appear to move in a loop, as
shown in Figure 1.11. This is called the retrograde loop.

Historically it was believed that the Earth is the center of the Universe,
and that the Sun, stars, and all the other planets revolve around the Earth at
uniform rates. The Earth was assumed to be stationary. This is called the geo-
centric theory of the Universe. The motion of the planets did not agree with
the principles of this theory. They did not show uniform motion. With re-
spect to the background stars, they showed retrograde loops, which were very
puzzling from this point of view. However, Copernicus argued that these ret-
rograde loops were explained nicely by the heliocentric theory, which proposes
that all planets, including the Earth, revolve around the Sun. Furthermore,
with the advent of telescopes, Galileo could observe the moons of Jupiter.
This provided clear evidence of the existence of heavenly bodies that revolve
around centers different from Earth. Hence, Earth no longer appeared to pos-
sess a special place in the Universe and this made it easier for the community
to accept the heliocentric theory.

In Figure 1.11 we explain how the heliocentric theory explains the retro-
grade loop of Mars. As shown in Figure 1.11, Mars is further away from Sun
in comparison to Earth. Its angular speed of revolution around the Sun is
smaller in comparison to Earth. Hence it takes longer to complete one revolu-
tion. The position of Earth and Mars at several different times are shown in
Figure 1.11. It is clear that for an observer at Earth, Mars would appear to
traverse a retrograde loop.

1.6 Sidereal Time

The standard solar time is defined with reference to the Sun. One solar day is
defined as the time interval after which the Sun is again at maximum elevation
in the sky. For astronomical purposes, it is convenient to define sidereal time,
which uses the fixed stars as a reference. Consider an observer P on the surface
of Earth at 12 noon when the Sun is directly overhead on day 1, as shown in
Figure 1.12. At this time, both the Sun and a fixed star are directly above P. In
Figure 1.12, it is day time for P and hence the star will not actually be visible.
After 1 sidereal day, P is again directly below the fixed star. The length of
this day is a little shorter than a solar day because Earth has to rotate an
extra angle, θ, before the Sun is again directly above P. On day 1, both the
Sun and the star are overhead at noon. The next day, the Sun will again be
overhead at noon, but the star a little earlier by an angle θ, converted to time
units (360o = 24 hours). After 6 months, Earth is on the opposite side of the
Sun. Now the star is overhead P at 12 midnight. The Sun comes overhead half
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a day later, that is, at noon. This implies that the number of sidereal days
that have passed by now are half a day more than the solar days. Hence, in 1
year, the number of sidereal days completed is one more than the number of
solar days.

Let T and T1 represent the time intervals corresponding to solar and side-
real days, respectively. Let To represent the period of orbital revolution, that
is, 1 year. As discussed above, the number of sidereal days in a year are one
more than the number of solar days. Hence we obtain

To
T1

− To
T

= 1 ,

which gives
1

T1
=

1

T
+

1

To
. (1.2)

The period of revolution P = 365.2563666 mean solar days (T). Hence we
obtain T1 = 0.99727 solar days.

fixed star

S

θ

P

P

day 1

day 2

FIGURE 1.12: An observer P at Earth is directly below the Sun and a
fixed star at noon on day 1. After completing 1 sidereal day, P returns to its
position below the fixed star. The solar day is longer because P has to traverse
an extra angle, θ, before the Sun is again directly overhead.
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1.7 Astronomical Catalogs and Software

There exist a large number of catalogs, software, and web resources that pro-
vide information, such as positions, brightness magnitudes, proper motions,
spectral classifications of stars, and other observable astronomical objects.
The first star catalog was published by Ptolemy in the second century. It
gave positions of 1,025 bright stars. A more modern catalog was published by
the Smithsonian Astrophysical Observatory (SAO) in 1966. It lists a total of
258,997 stars brighter than magnitude 9. A more recent catalog is the Guide
Star Catalog (GSC), which lists 945,592,683 stars up to magnitude 21 and is
available online. Digitized sky maps are also available online from the STScI
Digitized Sky Survey.

The task of identifying stars and constellations in the night sky is currently
made very easy with the advent of many software programs that simulate the
sky. One such software tool is Stellarium, available freely on the web. Using
this, one can obtain a sky map at any time. This can be correlated with
direct observations in order to identify the stars, planets, and constellations.
I encourage the reader to use this software to become familiar with the night
sky. You should try to identify constellations, bright stars, planets, etc. The
Google Sky application is also very useful for the purpose of this identification.

Exercises

1.1 Use the Stellarium software to become familiar with the night sky. You
should identify some of the prominent stars and planets visible in the
night sky and try to visually locate them by direct observation.

1.2 Use Stellarium to learn about the shapes of different constellations in
the night sky. By direct observation, try to identify a few of them. Try
also to identify the Milky Way.

1.3 (a) The standard unit of angle is degrees and its subdivisions minutes
and seconds. An alternate unit is radians, defined in Figure 1.13. Verify
that 180o = π radians. Notice that for small angles, the length of the arc
ABP is approximately equal to the chord AP. Hence θ is approximately
equal to D/r for small angles.
(b) Another unit of angle is hours, the same as the unit of time. In
this case, 360o = 24h or 1h = 15o, where the superscript (h) denotes
hours. Each hour is further subdivided into minutes and seconds in direct
analogy with time units. For example, 50o = 3h 20m, that is, 3 hours
and 20 minutes. Convert 40o and 160o into time units (hours, minutes,
and seconds).
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FIGURE 1.13: Let S denote the length of the arc ABP. The angle θ in
radians is defined as θ = S/r.

1.4 How was the mass and radius of the Earth measured historically? What
is the best method to measure it at present?

1.5 How was the mass and radius of the Moon and the Sun measured his-
torically? What is the best method to measure it at present?

1.6 Use Stellarium to observe the trajectories of different planets, the Sun,
and the Moon. Notice that the trajectories of all the planets and the
Moon lie roughly in a plane close to the ecliptic plane, the plane of
apparent motion of the Sun.

1.7 Use Stellarium to see the retrograde motion of a planet such as Mars.
You need to observe the motion of the planet with respect to fixed
background stars. Hence you may observe the change in its position as
you advance in units of a sidereal day. The retrograde motion is seen only
when Mars approaches close to Earth. Hence you need to determine the
time when this event happens. This can be easily done by experimenting
with the software.

1.8 Verify that 1 sidereal day is equal to 0.99727 solar days.

1.9 In analogy with a light year, we may also define a light day and a light
month as the distance light travels in a day and a month, respectively.
Determine the values of these distances in terms of the Astronomical
Unit (AU).
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We observe the Universe at many different wavelengths, visible light being
most common. Observations are made mostly by ground-based telescopes.
However, in order to eliminate atmospheric distortion, space-based telescopes,
such as the Hubble Space Telescope, are also used. What we typically observe
is the visible light emitted by different atoms and ions at the surface of stars.
This gives us information about the temperature, relative density of different
elements and their state of ionization at the stellar surface. We also observe the
Universe at other wavelengths, such as radio, microwave, infrared, ultraviolet,
x-rays, and gamma-rays. Excluding the radio, most of these observations are
made using space-based telescopes, as these frequencies are strongly absorbed
by the Earth’s atmosphere. Besides this, we also observe cosmic rays, which
are high-energy particles and consist mainly of protons and atomic nuclei.
The highest energy cosmic ray particles are observed to have energies on the
order of 1020 eV. This energy is extremely large. In comparison, the maximum
energy of protons that has been achieved in the laboratory is on the order of
1013 eV. This was achieved in the Large Hadron Collider (LHC), which consists
of a beam pipe of circumference 27 Km, equipped with the most powerful
magnets operating at liquid helium temperatures. How does a cosmic site
generate energies that are 10 million times higher? So far we do not have a
satisfactory answer to this question.

17
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2.1 Electromagnetic Waves

An electromagnetic wave consists of electric and magnetic fields propagating
in space. The fields oscillate perpendicular to the direction of propagation. We
can understand this with an analogy. Consider a wave propagating on a string
in the z direction. The wave at three different times is shown in Figure 2.1. The
string at any position moves up and down with time, that is, the displacement
of the string is perpendicular to the z-axis, similar to the oscillation of the
electric and magnetic fields in an electromagnetic wave.

t1 t2 t3

z

FIGURE 2.1: The displacement of a string at three different times t1,t2, and
t3.

λ

fixed time

z

FIGURE 2.2: A snapshot of a traveling wave on a string at fixed time. The
distance between two consecutive crests or displacement maxima is called the
wavelength λ.

A snapshot of the string at any fixed time is shown in Figure 2.2. The
distance between two maxima is called the wavelength, λ. The displacement
of the string at any fixed position z at different times is shown in Figure 2.3.
The time interval between two crests is called the time period T . In one time
period, the particles on the string complete one full oscillation. The reciprocal
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or inverse of the time period is called the frequency, denoted by symbol ν. We
can write this relationship as

ν =
1

T
. (2.1)

The frequency is interpreted as the number of complete oscillations per unit
time. The unit of frequency is Hertz, denoted by Hz, which is equivalent to
the number of oscillations per second. The speed of the wave is related to the
frequency and wavelength by the formula

v = νλ . (2.2)

The electromagnetic waves are more abstract in nature, representing the
propagation of electric and magnetic fields, which cannot be directly visual-
ized. We detect their presence indirectly through their influence on charged
particles and magnets. These waves are also characterized by their frequency
ν, which represents the number of oscillations of the electric and magnetic
fields per unit time. The frequency is related to the time period in exactly the
same manner as in the case of a wave on a string. Similarly, the wavelength
represents the distance between two adjacent maxima of the electric field at
any fixed time. The speed of an electromagnetic wave in vacuum is denoted
by the symbol c, and is equal to

c = 299, 792, 458 m/s . (2.3)

This is a very high speed, in fact the largest speed possible. No material
particle or information can travel faster than the speed of light.

fixed position

T

t

FIGURE 2.3: A traveling wave on a string shown as a function of time at a
fixed position. The time interval between two successive crests or displacement
maxima is called the time period.

In quantum mechanics, an electromagnetic wave is described as a beam of
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particles called photons. Each photon moves at speed c in vacuum. Its energy,
E, is related to its momentum, p, by the formula

E = pc . (2.4)

Furthermore, its energy is also related to its frequency as

E = hν , (2.5)

where h is Planck’s constant,

h = 6.6261× 10−34 Kg m2/s = 4.1357× 10−15 eV · s . (2.6)

We also define the constant ~ = h/2π.

2.2 Electromagnetic Spectrum

Most of our information about the Universe is based on observations of elec-
tromagnetic radiation emitted by astronomical sources. We receive radiation
over a wide range in the electromagnetic spectrum, from very low frequency
radio waves to extremely high frequency gamma (γ) rays . The electromag-
netic spectrum is classified into γ-rays, x-rays, ultraviolet, visible, infrared
and radio, as shown in Figure 2.4. The γ-rays, x-rays, and ultraviolet (UV)
radiation all have smaller wavelengths and higher frequencies in comparison
to visible light. On the other hand, the infrared (IR), microwaves, and radio
waves have larger wavelengths and hence smaller frequencies. The radio waves
have the largest wavelengths and play a very important role in communica-
tions. In the lower panel in Figure 2.4, we also show the absorption of radiation
by the Earth’s atmosphere at different frequencies. We see that the gamma
rays, x-rays, and UV radiation are completely absorbed by the atmosphere.
As we reach visible wavelengths, the atmosphere becomes remarkably trans-
parent. The absorption suddenly falls and becomes close to 0% in the entire
visible range. The absorption due to atmosphere again starts increasing as we
move to IR frequencies. It is interesting that the human eye has adapted itself
to precisely that part of the spectrum that suffers minimal absorption due to
atmosphere. At IR frequencies we see several frequency bands where the ab-
sorption is relatively small. Then as we reach the microwave frequencies, the
absorption by atmosphere is again very large. Finally we see a wide window
in radio waves where the atmosphere again becomes very transparent. This
gets terminated at wavelengths larger than about 10 m due to the ionosphere.
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FIGURE 2.4: The electromagnetic spectrum from very small wavelength
gamma rays (γ-rays) to high wavelength radio waves. The wavelength of differ-
ent parts of the spectrum is also shown. The lower figure shows the absorption
due to atmosphere at different wavelengths.
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FIGURE 2.5: The electromagnetic spectrum of visible light as revealed by
a prism. A beam of white light is incident on one face of the prism. The light
emerging from the other face breaks up into different colors that are broadly
classified into violet, indigo, blue, green, yellow, orange, and red.

The wavelengths of the visible spectrum lie roughly in the range 390 to
780 nm. The corresponding range of frequencies is 7.2×1014 to 3.8×1014 Hz.
These are broadly classified into seven colors violet, indigo, blue, green, yellow,
orange, and red. The violet and red colors have the smallest and largest wave-
lengths respectively. One can also see this spectrum visually using a prism,
as shown in Figure 2.5. As the light rays enter the first face of the prism,
they undergo refraction. This phenomenon is illustrated in Figure 2.6. This
figure shows an electromagnetic wave propagating from medium 1 to medium
2, which may be air and glass, respectively. The interface is assumed to be
a plane surface. The light rays bend as they propagate from one medium to
another. The amount of bending is determined by the refractive index of the
medium. For air, the refractive index is very close to 1, for glass it is about
1.5. Let us assume that light is incident at an angle θ1 relative to the normal
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to the surface, as shown in Figure 2.6. The angle θ2 at which it propagates in
medium 2 is given by

n2 sin θ2 = n1 sin θ1 , (2.7)

where n1 and n2 are the refractive indices in medium 1 and medium 2, re-
spectively. The refractive index also depends on the frequency of light. If the
incident light is a mixture or superposition of several different frequencies,
these different components bend by different amounts. The refractive index
in most materials increases with frequency. Hence a light beam of violet color
undergoes larger refraction in comparison to red color.

θ
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medium 2,

n
1

medium 1,

FIGURE 2.6: A beam of light is incident at an angle θ1 with respect to the
normal (dashed line) to the surface. As it propagates from medium 1 to 2,
it bends, such that in medium 2 it makes an angle θ2 to the normal. This is
called refraction of light.

In the case of a prism, a light wave undergoes refraction at two surfaces,
as shown in Figure 2.5. Let us assume that the incident wave is the standard
white light, which is a mixture of all colors. At the left surface, the ray enters
glass from air. Different colors undergo different amounts of refraction and
hence the light beam breaks up into different colors. The light beam undergoes
another refraction at the second surface, as it propagates from glass to air.
The light emerging from this surface clearly shows seven different colors of the
rainbow. This breaking up of light into different frequencies or colors is called
dispersion.

We observe the radiation from astronomical sources using a wide range of
instruments, both Earth and space based. The Earth-based observations are
limited by the atmosphere. The absorption allows observations only in visible,
radio and partially in IR. We see a remarkably low absorption in the visible
region. In radio we also see a wide window from 300 MHz to 10 GHz that
corresponds to a wavelength range of a few centimeters to about 10 m. At
smaller frequencies, the ionosphere cuts off the radiation. In the infrared, we
also see small windows where the atmosphere allows significant transmission.
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2.3 Telescopes

θA

B

FIGURE 2.7: Two distant point objects at an angular separation θ viewed
by a telescope. The image of each object gets smeared due to several effects,
as shown in Figure 2.8.

FIGURE 2.8: The smeared image of two point objects shown in Figure 2.7.
We can resolve these two objects only if their image is clearly separated.

A telescope has two basic components: an objective and an eye piece. The
objective receives light from the astronomical object and forms its image.
This is the most important component of a telescope. It may consist of a
convex lens or a concave mirror. The two most important qualities that we
seek in a telescope are its Light Gathering Power (LGP) and its resolving
power. The LGP determines the brightness of the image. The resolving power
is the ability of a telescope to distinguish two objects that may be very close to
one another. For example, consider two objects, A and B, that may be located
in the night sky at very small angular separation θ, as shown in Figure 2.7. For
simplicity, let us assume that they are both point objects. As we view these
objects through a telescope, their image gets slightly smeared (see Figure 2.8)
for reasons explained later in this chapter. Hence point objects do not appear
as point objects in the image. If the angle θ is very small, the image of these
two objects will overlap. The minimum angle at which we can see them apart
is called the resolution of the telescope. If the angular separation between two
objects is less than this minimum angle, their image will overlap and we will
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not be able to resolve these objects. For larger angular separations, we will
find these two objects clearly separated.

The image formed by a telescope can be viewed by an observer through
the eye piece as shown in Figure 2.9. The image seen by the observer appears
magnified. This property depends crucially on the choice of eye piece, as we
explain below. There are two basic types of telescopes: (1) refractor telescope
and (2) reflector telescope.

Objective

Eye piece

FIGURE 2.9: The two main components of a telescope are the objective and
the eye piece.

2.3.1 Refractor Telescope

f

F
axis

FIGURE 2.10: A parallel beam of light is focused at the focal point F by a
convex lens.

A refractor telescope uses a convex lens as an objective. A convex lens,
schematically shown in Figure 2.10, forms its image through refraction. It is
usually made of glass. In Figure 2.10 we have shown its side view. The solid
line passing through its center is called the axis. A parallel beam of light,
incident on one of its surfaces, is focused at a point on the axis, denoted as
F in Figure 2.10. This point is called the focal point and its distance from
the center of the lens is called the focal length (f). The light rays undergo
refraction twice as they pass through the lens: (1) as they enter the lens from
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air and (2) as they leave the lens, propagating from glass to air. In both cases,
the rays are bent toward the axis. A plane passing through the focal point
and parallel to the plane of the lens is called the focal plane. A parallel beam
of light, which may be inclined with respect to the axis, is focused at a point
on the focal plane, as shown in Figure 2.11. An astronomical object, such as a
star, is located at very large distance from us and appears almost like a point.
Due to the large distance, rays of light received from such an object are nearly
parallel and hence its image is formed on the focal plane.

Focal plane

axisF

FIGURE 2.11: A parallel beam of light that is inclined at an angle with
respect to the axis, is focused at a point on the focal plane.
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FIGURE 2.12: Here the left and the right lens are the objective (O) and
eye piece (E), respectively. The objective forms the image of two astronomical
objects A and B at its focal plane. This image, viewed through the eye piece,
appears magnified and brighter.

The image formed by the objective can be viewed by eye through the eye
piece (see Figure 2.12). The eye piece consists of another convex lens. It is
positioned such that F is also located at its focal point. As explained above, a
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parallel beam of light is focused by a convex lens on its focal plane. Conversely,
if an object is kept at the focal point (or focal plane) of a convex lens, then
the rays from this object will form a parallel beam after emerging from such
a lens. Hence, while viewing through the eye piece, the eye would receive a
parallel beam of light exactly as it would receive if it were viewing the object
without a telescope. The object would be perceived to be located at very large,
nearly infinite distance. The advantage of viewing through a telescope is that
the image is brighter and magnified.

Brightness: The fact that the image formed by a telescope is brighter is
easily understood. It collects light over a larger area, the area of the objective,
in comparison to the eye. The light is then focused over a small area, producing
a bright image. This LGP is a very important property of a telescope. It is
proportional to the area of the objective, or equivalently the square of its
radius (R), that is,

LGP ∝ R2 . (2.8)

Hence if we increase the radius of the objective by a factor of 2, the LGP
increases by a factor of 4.

Magnification: The telescope also produces a magnified image of astronom-
ical objects. Consider two point-like objects, such as stars. Assume that the
angle that they subtend on a telescope is θi. Let the angle subtended on the
eye, viewing through the eye piece, be θe (see Figure 2.12). The magnification
produced by the telescope is defined as

m =
θe
θi
. (2.9)

A large value of θe implies that the two objects subtend a larger angle at the
eye and hence appear wider apart. From Figure 2.12 we see that

tan θe
tan θi

=
fo
fe
,

where fo and fe are the focal lengths of the objective and the eye piece,
respectively. Typically we are interested in observing objects at very small
angular separations θi. Hence both θi and θo are usually very small. For small
angles we can use tan θ ≈ θ and obtain

m ≈ fo
fe
. (2.10)

Chromatic aberration: A major problem with refracting telescopes is that
the image at different frequencies is formed at different positions. Hence the
image gets distorted. This phenomenon is called chromatic aberration. The
reason for this can be easily understood. The image is formed by refraction
due to the objective lens. Hence, just as in the case of a prism, light rays
emerging from a lens break up into different colors that form images at differ-
ent positions. This aberration effect limits the quality of images that can be
obtained with a refracting telescope.
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2.3.2 Reflecting Telescope

A reflecting telescope uses a concave mirror as the objective, which forms its
image due to reflection. A concave mirror is parabolic in shape. This has the
property that a parallel beam of light is focused at a point on the axis of the
mirror, called the focal point, as shown in Figure 2.13. A parallel beam of
light that may be inclined to the axis is focused at a point on the focal plane,
analogous to the image formed by a convex lens. The image of an astronomical
object, formed by a concave mirror, is located on the same side as the object,
in contrast to the image formed by a convex lens.

FIGURE 2.13: A parabolic concave mirror focuses a parallel beam of light
at a point F on its axis called the focal point.

The image formed by the objective, also called the primary mirror, can be
imaged or viewed by several different methods, as illustrated in Figures 2.14,
2.15 and 2.16. In the case of Prime Focus, Figure 2.14, the camera or a digital
imaging device can be placed directly at the focal point of the primary mirror.
This can be operated remotely. In all other cases, one uses a secondary mirror
to direct the light out of the telescope. In Newtonian focus, shown in Figure
2.15, the light is directed out through a hole in the side of the telescope. One
can view the resulting image through an eye piece, as illustrated in Figure
2.17. Finally, in Cassegrain focus, shown in Figure 2.16, the light is directed
out through a hole in the primary mirror.

The reflecting telescopes offer several advantages in comparison to the
refracting telescopes. One major advantage is that they do not suffer from
chromatic aberration. Hence they are able to form much sharper images. Fur-
thermore, it is possible to have much larger apertures in the case of reflecting
telescopes. In the case of a refractor, a large aperture requires a very large
convex lens. Even if one is able to manufacture a sufficiently large lens with
the required precision, it is difficult to provide a support for it inside a tele-
scope. This is partly because such large convex lenses are very bulky and also
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because the support would have to be inside the telescope. In contrast, the
support for a reflecting concave mirror can be installed outside the telescope.
Furthermore, a reflecting mirror can be easily segmented, thus reducing the
requirements on the support system. Due to these advantages, most modern
telescopes use a reflecting mirror as the objective.

Prime focus

prime
focus

Primary
mirror

FIGURE 2.14: A reflector telescope used in the Prime focus mode. Here
an imaging device, such as a camera, is placed directly at the focus of the
primary mirror in order to record the image.

Newtonian focus

secondary
mirror

Primary
mirror

FIGURE 2.15: Newtonian focus: Here a secondary mirror is used in order
to direct the light out of the telescope through an opening at the side of the
telescope. The final image is formed outside the telescope.
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Cassegrain focus
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FIGURE 2.16: Cassegrain focus: Here a secondary mirror is used to focus
the light out through an hole in the primary mirror.

eyepiece

primary
mirror

secondary
mirror

FIGURE 2.17: An example of a reflecter telescope using Newtonian focus.
Here an eye piece is used to view the final image.

2.4 Observations at Visible Frequencies

At visible frequencies also, the atmosphere causes considerable distortion that
limits the resolution. The intensity as well as the direction of starlight changes
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due to the atmosphere. The direction changes due to the refractive index of the
atmosphere. Furthermore, light is scattered and absorbed by the atmosphere.
Both of these effects cause attenuation of light and lead to reduced intensity
at the Earth’s surface. Scattering causes attenuation because it scatters the
incident light beam in all directions. The light absorbed by the atmosphere
is later emitted, but in directions different from the initial direction of prop-
agation and at different frequencies. Hence the light received by an observer
from a particular star is reduced due to both of these effects. The attenuation
of light due to scattering and absorption is called extinction.

The atmosphere is always changing with time. The temperature, pressure,
and wind velocity at any position show rapid fluctuations. Due to such fluctua-
tions, the intensity and direction of starlight reaching Earth’s surface also keep
changing rapidly with time. The change in direction and intensity of light is
called scintillation. This affects the stars more than the planets because stars
appear as nearly point sources. The relevant quantity is the angular size of
the object, which is the angle subtended by the star’s surface at the position
of the observer (∆θ ≈ D/L), where D is the diameter of the object and L
its distance from Earth. Although stars have much larger diameters in com-
parison to planets, their distances from Earth are so large that their angular
sizes are much smaller. Hence the fluctuations in their angular position due
to scintillation are large in comparison to their angular size. Planets subtend
a larger angle and hence the effect of scintillation is relatively small.

In order to understand the contribution of refraction, we assume a simple
plane parallel model of the atmosphere, where different layers have different
refractive indices, as shown in Figure 2.18. This model is valid as long as the
star is located close to the vertical direction, as in this case we can neglect the
curvature of Earth. Viewed from above the atmosphere, the star is located at
an angle θ (see Figure 2.18). However due to atmospheric refraction it appears
to be at an angle ξ. By applying Equation 2.7 to different layers, you may show
as an exercise (Exercise 2.7) that

n0 sin ξ = sin θ , (2.11)

where n0 is the refractive index of the layer of air close to the surface. The
deviation of the ray, δθ = θ − ξ << 1, is given by

n0 sin ξ = sin(δθ + ξ) ,

and hence
δθ ≈ (n0 − 1) tan ξ ≈ 58.2′′ tan ξ , (2.12)

where the numerical result given in the last equation is obtained by observa-
tions and is valid for small values of ξ. For large ξ, this formula is not valid
because the curvature of Earth is not ignorable. On the horizon we find that
δθ ≈ 35′. Refraction leads to a shift in the observed direction of the star. If
the atmosphere is stable, this observed direction will remain constant with
time. However, due to fluctuations (convection, turbulence) the atmosphere
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is always changing. Therefore the observed direction keeps changing rapidly
with time.

n = n
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FIGURE 2.18: A plane parallel model of the atmosphere. We split the atmo-
sphere into several layers with refractive indices n0, n1 ... nk. Beyond the kth

layer we assume that the refractive index is unity, corresponding to vacuum.
A ray of light strikes the top of the atmosphere at an angle θ relative to the
normal to the surface. After undergoing refraction through the atmosphere,
it strikes the surface of Earth at an angle ξ. (Adapted from H. Karttunen et
al., Fundamental Astronomy.)

2.4.1 Theoretical Limit on Resolution

A fundamental limit on the resolution of any instrument, which may be the
human eye or a telescope, arises due to diffraction. The image of a point-like
object formed by a telescope becomes smeared over a certain area due to this
effect, as shown in Figure 2.19. Hence it is not possible to distinguish or resolve
two objects if their smeared images overlap. This leads to a lower limit on the
angular separation θ between two point objects that can be resolved by the
telescope. The limit at wavelength λ is given by

sin θ ≈ θ ≥ 1.22λ/D , (2.13)

where D is the diameter of the aperture of the telescope. If the angular separa-
tion between two objects is smaller than this limit, then their images formed
by the telescope will overlap. The resolving power increases with an increase
in diameter; hence it is best to have as large a diameter or collection area
as possible. Large aperture is also useful because it allows the instrument to
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capture a larger amount of the radiant energy emitted by the star. This is
particularly important for detecting faint objects.

FIGURE 2.19: The image of a point-like object becomes smeared due to
diffraction.

2.4.2 Seeing

One can, in principle, improve the resolution as much as possible by increas-
ing the aperture diameter of a telescope. However, as the diameter becomes
large, atmospheric effects lead to smearing of the image. This happens be-
cause the light received by different points on the aperture from a particular
source travels through different paths in the atmosphere. Because the atmo-
spheric fluctuations depend on position, these different rays undergo different
amounts of refraction and hence form an image at different points. The image,
therefore, is broken up into different spots or speckles, whose positions keep
changing with time because the atmosphere is not stationary. Points sources,
therefore, appear as vibrating speckles. This phenomenon is called seeing. This
tends to obscure details in the source and we would like the resulting “seeing
disk” to be as small as possible. Hence, although the theoretical resolution
for a telescope with a large aperture may be small, in practice the resolution
is limited by atmospheric fluctuations. This imposes a serious limitation on
the resolution of Earth-based observations. The best resolution that can be
achieved by Earth-based optical telescopes, that is, telescopes operating at
visible wavelengths, is about 1′′. Some techniques such as speckle imaging can
partially solve this problem. In this case, one takes a series of short exposure
time images. The exposure time is taken to be sufficiently short so that over
this time the atmosphere does not change significantly. The resulting images
are then processed to produce a high-quality image. This technique has proved
to be very successful for bright astronomical sources.

Some prominent ground based optical facilities are
(1) W. M. Keck Observatory: It is located near the summit of Mauna Kea in
Hawaii at an altitude of 4,145 m. It has two telescopes, each of diameter 10
m, operating at optical and near-infrared frequencies.
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(2) Very Large Telescope (VLT) (Paranal Observatory): It is located in the
Atacama desert, Chile, at an altitude of 2,635 m. It consists of four separate
telescopes, each of diameter 8.2 m, and operates at visible, near-, and mid-
infrared frequencies.

2.5 Mounting of Telescope

The telescope must be mounted such that it has two rotation axes correspond-
ing to the two degrees of freedom on the celestial sphere. While making an
observation, one also needs to rotate it slowly and continuously in order to
compensate for the Earth’s rotation. There exist two standard methods for
mounting the telescope: equatorial and azimuthal mounting.

2.5.1 Equatorial Mount

One of the axes (polar or hour axis) points along the axis of rotation of the
Earth. The other axis (declination axis) lies on the equatorial plane. The
telescope is continuously rotated about the polar axis to compensate for the
Earth’s rotation. This is discussed in more detail in the next chapter.

2.5.2 Azimuthal Mount

One of the axes points along the local vertical and the other along the horizon-
tal. Here one needs to rotate about both axes in order to account for Earth’s
rotation.

The equatorial mount is convenient because one needs to rotate only about
one axis in order to compensate for the Earth’s rotation. However, the az-
imuthal mount is simpler and more stable because one of the axes points
along the local vertical.

2.6 Interferometry

In this case we use two or more telescopes, or antennae in the case of radio
waves, widely separated from one another. The waves received by different
antennae are added together. This phenomenon of adding two waves is called
interference. In Figure 2.20 we show a two-antenna interferometer. In radio
astronomy, the waves received by the two antennae are first converted into
electrical signals before adding. The best resolution achieved in this case is
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θ ≈ λ/D, where D is the distance between the antennae and is called the base-
line. Hence instead of using one huge antenna of diameter D, we can simply
use many smaller antennae widely separated from one another. These sample
the wave at different positions and produce a resolution that is determined
by the distance between antennae. The technique has proven very useful for
radio astronomy where the wavelength is much larger compared to optical
wavelengths and hence we need a much larger value of D in order to achieve
good resolution. Some large baseline radio telescopes are

(1) Very Large Array (VLA), USA, which consists of an array of 27 radio
telescopes in a movable Y configuration. The diameter of each aperture
or dish is 25 m, and the maximum configuration diameter is 35 Km. It
is sensitive to wavelengths larger than 1.3 cm and has a resolution of
0.1′′.

(2) Very Large Baseline Interferometry (VLBI) uses radio telescopes scat-
tered all over the Earth and hence can achieve very high resolution.

(3) Giant Metrewave Radio Telescope (GMRT), located in India, is the
world’s largest radio telescope at meter wavelengths. It has 30 antennae
each with a dish diameter of 45 m, spread over an area of about 25 Km2.
The largest baseline is 28 Km.

The largest single dish radio telescope is located at Arecibo Observatory
in Puerto Rico. It has a dish diameter of 305 m. It was constructed in a
depression formed by a karst sinkhole.

L

FIGURE 2.20: A two-antenna interferometer: The path difference between
radiation from a distant source reaching the two antennae is L. The waves
received by the two antennae are converted into electrical signals and added
together.

2.7 Observations at Other Wavelengths

At wavelengths other than optical and radio, observations are best done above
the atmosphere using satellites. Infrared Earth-based observations are possible
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in some frequency intervals. These are made at high altitudes in dry locations
as water vapor absorbs infrared significantly. Some examples of Earth-based
infrared observatories are (1) Mauna Kea Observatory at 4,205 m above sea
level in Hawaii, (2) Infrared Observatory at Ladakh, India, at 4,500 m above
sea level. Space-based infrared observations were first made by the Infrared
Astronomical Satellite (IRAS) launched in 1983. One of its accomplishments
was the detection of dust in orbit around young stars. This dust is expected
to later form planets. Similarly, satellite observations have been made in UV,
EUV, x-rays, gamma rays, etc.

Gamma rays are photons with energies Eγ > 105 eV. These are produced
by atomic nuclei and hence probe the phenomenon of nuclear transitions in as-
trophysics. An interesting phenomenon in gamma radiation is the observation
of γ-ray bursts. These were discovered by satellites sent by the United States
to monitor nuclear tests in Soviet territory during the Cold War era. Instead,
they found a large number of γ-ray bursts coming at random from different
directions in the sky. The bursts lasted only for a few seconds. After the burst,
the region of the sky is quiet. For a long time it was not even possible to iden-
tify any quiet source at the position of the burst. Recent observations have
identified a faint optical source in some cases. This is identified as the galaxy
in which the burst originated. Optical afterglows have also been observed in
some cases. These objects are very far away from us. The energy released by
a gamma ray burst in a few seconds is larger than the energy released by
the Sun during its entire lifetime of approximately 1010 years. One possible
explanation for the bursts is that they are caused by the collapse of a very
massive, gigantic star, which leads to a very energetic supernova explosion.

Exercises

2.1 The visible spectrum lies in the wavelength range 390 to 700 nm. De-
termine the corresponding range of frequencies. Also determine the fre-
quency of radio waves with wavelength 10 cm.

2.2 The Hubble Space Telescope has a primary mirror of diameter 2.4 m.
Determine its angular resolution at a visible wavelength of 500 nm. Com-
pare this with the best resolution of 1′′ possible with Earth-based optical
telescopes.

2.3 Determine the resolution of the Very Large Array (VLA) at a wavelength
of 2 cm, assuming a baseline of 35 Km. Determine also the resolution
of a Very large baseline Interferometer (VLBI), that has a baseline of
1,000 Km at 2 cm wavelength.

2.4 Determine the energy in eV of a radio, visible, x-ray, and γ-ray photon.
Assume that their wavelengths are 10 cm, 500 nm, 0.1 nm, and 10−5

nm, respectively.
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2.5 Verify the conversion of Planck’s constant, h, from Kg m2/s to eV·s,
given in Equation 2.6.

2.6 Using Equation 2.12, determine the deviation of a light ray that appears
to arrive at an angle of 10o relative to the normal.

2.7 Prove Equation 2.11 for a plane parallel model of the atmosphere, il-
lustrated in Figure 2.18. Hint: Apply Equation 2.7 sequentially to dif-
ferent layers, starting from the top. For example, sin θ = nk sin θk,
nk sin θk = nk−1 sin θk−1, etc. Eliminate sin θk, sin θk−1 ..., θ1.
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Astrometry is the branch of astronomy that deals with the positions and
motions of heavenly objects. The positions are specified in terms of their
distances and angular positions on the sky. We need to choose a suitable
reference or coordinate system for this purpose. For example, the entire surface
of the Earth is mapped by longitudes and latitudes. The latitude and longitude
of any city give us its angular position or coordinates. We similarly imagine a
grand celestial sphere with all the stars and planets scattered on its surface. We
are interested in defining a suitable angular grid to specify angular positions
on this sphere. Besides the two angular coordinates, we also need the third
coordinate, namely the distance of the object from some chosen point, called
the origin of the coordinate system. The origin may be taken to be the position
of the Earth or the Sun.

The positions, as observed from Earth, keep changing due to several fac-
tors. Dominant among these is the rotation of Earth around its axis. This
causes a periodic change in the observed angular positions of the stars, which
appear to move from east to west in the sky. It is useful to take this periodic
shift out of our observations because we want to focus on the properties of
the stars rather than the rotation of Earth. For this purpose we define a co-
ordinate system that does not rotate along with Earth. Once this is done, the
positions of all stars remain approximately fixed. You can verify this directly

37
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by observing the night sky or by using software such as Stellarium. As you
observe the stars over a period of a few hours, you will see them move from
east to west. However, their relative positions with respect to one another
remain fixed. In contrast, the planets and the Moon show significant motion
with respect to the background stars.

The positions of stars also change very slightly due to the revolution of
Earth around the Sun. This shift arises due to a phenomenon called parallax,
which we discuss in detail later in this chapter. Besides that, the positions of
stars change slightly due to their intrinsic motion relative to the Sun. This
motion as well as the shift due to parallax are so small that they can be
detected only with sophisticated measurements. The planets, of course, move
much more rapidly in elliptical paths around the Sun.

The position and velocity of any object are both vector quantities. A vector
quantity has magnitude as well as direction. In contrast, quantities such as
height, thickness, and radius are scalars and only have magnitude, but no
direction. For example, if we wish to specify the position of a star, we need to
give both its distance from us as well as the direction of its location. Hence it
is a vector quantity and we call it the position vector of a star. Similarly, the
velocity vector gives us information about the total speed of an object as well
as its direction of motion.

θ
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xO

P

r
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y

FIGURE 3.1: The position vector ~r of point P on a two-dimensional surface.

We next briefly discuss the concept of a vector. The position vector, ~r, of
a point P on a two-dimensional plane surface, labeled by coordinates (x, y),
is shown in Figure 3.1. These are called the Cartesian coordinates of P. The
vector, ~r, makes an angle θ with the x-axis. Let the length of the vector, that
is, the distance of P from O, be denoted by r. Its projections on the x- and
y- axes are given by

x = r cos θ ,

y = r sin θ . (3.1)
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These are called the components of the vector ~r. An alternate set of coordi-
nates is given by (r, θ). These are called the polar coordinates. For a general

vector ~V , we denote its magnitude by V and its components by Vx and Vy. If
~V makes and angle θ with the x-axis, we obtain

Vx = V cos θ ,

Vy = V sin θ . (3.2)

Here we are primarily interested in the velocity vectors of stars, besides their
position vectors.
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FIGURE 3.2: The position vector ~r of point P in a three-dimensional space.

In three dimensions, the position of any object is specified by three coor-
dinates. We can choose these to be the Cartesian coordinates (x, y, z). The
position vector ~r of point P is shown in Figure 3.2. In this figure, PC and PQ
are perpendicular to the z-axis and the x−y plane, respectively. Also, QA and
QB are perpendicular to the x- and y- axes, respectively. The z component
of ~r is equal to z = r cos θ. The magnitude of the projection vector, ~rp, is
rp = r sin θ. Using Equation 3.1, the x and y components of the vector ~r are
x = rp cosφ = r sin θ cosφ and y = rp sinφ = r sin θ sinφ. Hence we obtain

x = r sin(θ) cos(φ) ,

y = r sin(θ) sin(φ) ,

z = r cos(θ) . (3.3)

We can also use the coordinates (r, θ, φ) instead of (x, y, z). These are called
the spherical polar coordinates. Here r, θ and φ are called the radial, polar, and
azimuthal coordinates, respectively. The Cartesian coordinates, (x, y, z), can
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vary over all possible values from −∞ to +∞. The spherical polar coordinates,
however, take values in the range r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, where all
the angles are given in radians. In general, the x, y and z components of any
vector ~v in three dimensions are given by

vx = v sin(θ) cos(φ) ,

vy = v sin(θ) sin(φ) ,

vz = v cos(θ) , (3.4)

where v is the magnitude of the vector.
In astronomy, we essentially use the spherical polar coordinates. The only

difference is that the latitude, δ, defined as

δ = 90o − θ , (3.5)

is used instead of the polar coordinate θ (see Figure 3.3). This coordinate takes
values in the range −90o to 90o. The azimuthal coordinate φ is equivalent to
the longitude.
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FIGURE 3.3: The angular coordinates (δ, φ) of a point P.

In many cases we are not interested in the radial coordinate or the distance
of the object. The distance of astronomical objects is also much more difficult
to measure in comparison with their angular coordinates. We can focus on the
angular coordinates by projecting each object on an imaginary sphere with
Earth as its center and very large (almost infinite) radius. This is called the
celestial sphere.
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The velocity vector ~v of an object P is schematically shown in Figure 3.4.
Its magnitude, v, is called the speed. Its Cartesian components (vx, vy, vz)
are given by Equation 3.4. In astronomy, it is convenient to use the radial
component, vr, and the tangential component, ~vt, as shown in Figure 3.4. The
radial component, vr, is simply the component of ~v along the radial direction.
The tangential component, ~vt, is the component in the tangential plane or the
plane perpendicular to the position vector, ~r, of P. Hence we can express the
velocity vector as

~v = (vr, ~vt) . (3.6)

vr

vt
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y

z

v

O

P

FIGURE 3.4: The radial, vr, and tangential, ~vt, velocity components of the
velocity vector, ~v, of the object P .

3.1 Coordinate Systems

In order to specify the two angular coordinates we need to pick an origin and
choose some reference for specifying the latitude and longitude of an object.
The latitude is specified by choosing a reference plane or the equatorial plane,
passing through this origin. This plane lies at latitude δ = 0. The longitude
or the azimuthal angle is specified by choosing some reference direction. Some
of the standard coordinate systems are described below.
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3.1.1 The Horizontal System
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FIGURE 3.5: (a) The tangent plane at the position of the observer, O,
located at the surface of the Earth. Here C denotes the center of the Earth.
Also shown are the zenith and the nadir. (b) The celestial sphere with the
observer at its center.

This coordinate system is centered at the observer, O, who may be located at
some point on the surface of the Earth. We consider the tangent plane at the
location of the observer, as shown in Figure 3.5a. This plane cuts the celestial
sphere at the horizon. We shall refer to this plane as the horizontal plane.
The points on the horizon toward north and south are denoted as N and S,
respectively in Figure 3.5. The great circle NZS (Figure 3.5b) is called the
meridian. All great circles passing through the zenith are called verticals. The
position of any object in this coordinate system is specified by the altitude or
elevation a and the azimuthal coordinate or azimuth A. Here the horizontal
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plane acts as the reference plane and the verticals as the longitudes. The
altitude a is the angle along the vertical with respect to the horizontal plane.
It lies in the range [−90o, 90o] and is analogous to the latitude, Equation 3.5.
The azimuth A is the angular position of the vertical passing through the
object with respect to some fixed direction. There is no universal definition
of this fixed direction. An observer chooses some convenient reference and A
can be measured clockwise or counterclockwise.

This coordinate system is most convenient from the point of view of the
observer. However, stars appear to move from east to west due to the rotation
of the Earth. Hence the positions of stars change rapidly in this system, and
it is not convenient for use in catalogs.

3.1.2 Equatorial Coordinate System

We need a system in which the positions of stars remain fixed with time,
at least approximately. One such system is the equatorial coordinate system.
Here we use the fact that the axis of rotation of Earth remains approximately
fixed. It points about 1o away from the star Polaris (1o ≈ 2 full moons).
The equatorial plane that is perpendicular to this axis also remains fixed. We
extend this plane so that it cuts the celestial sphere. The intersection is called
the equator of the celestial sphere. This is taken to be the reference plane
to specify the latitude of the object. This coordinate is called the declination
δ (Dec). It lies in the range [−90o, 90o], with points on the equatorial plane
having δ = 0. The second or azimuthal coordinate is called right ascension α
(or RA). It is measured counterclockwise from a fixed point in the sky called
the vernal equinox. Recall that in spring, the Sun appears to move from the
southern to northern hemisphere. The time of this event, that is, when the
Sun crosses the equatorial plane, as well as the direction to the Sun at that
moment is called the vernal equinox (see Figure 1.5). The coordinate RA takes
values in the range of 0 to 360o, analogous to the longitude. It is also specified
in time units, 0 to 24 hours. For example, α = 90o is equal to 6 hours, denoted
as 6h, in time units.

The stars remain approximately fixed in this coordinate system. They are
unaffected by the rotation of Earth. If we choose the origin as the center of the
Earth, then the angular positions of stars will change slightly with time due
to Earth’s revolution. This shift can be eliminated by choosing the center of
the Sun as the origin. In any case, such small changes are irrelevant for most
purposes. The axis of rotation of Earth also undergoes a slow change due to
the precession, as discussed later in this chapter. Hence the equatorial frame
changes slowly and one has to specify the time or epoch in which the system
is used. The system is updated every 50 years. Before 2000, the system B1950
was in use. Now the system J2000 is being used.
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3.1.3 Ecliptic System

Ecliptic is the orbital plane of the motion of the Earth around the Sun or,
equivalently, it is the plane in which the Sun appears to move around the Earth
(see Figure 1.4). The ecliptic pole is the point where a line perpendicular to
the ecliptic at the origin meets the celestial sphere. The origin may be chosen
to be the position of the Earth or the Sun. The equatorial and ecliptic planes
intersect along a straight line directed toward the vernal equinox, which is
the reference direction for the definition of RA, the azimuthal coordinate in
the equatorial system. In the ecliptic system, the ecliptic plane is used as the
reference for latitude. The reference for longitude is taken to be the vernal
equinox in this case also.

3.1.4 Galactic Coordinate System

The galactic coordinate system is defined by using the fact that the Milky Way
forms a planar structure. This plane is used as a reference plane to specify the
galactic latitude b. The galactic longitude l is measured counterclockwise from
the direction of the center of the galaxy. In equatorial coordinates, J2000, the
galactic pole is located at δ = 27.13o and α = 192.86o and the galactic center
is located at δ = −28.94o and α = 266.40o.

3.1.5 Supergalactic Coordinate System

In this case the supercluster plane is used as the reference for defining the
supergalactic latitude (SGB). The supergalactic pole is located at α = 283.8o

and δ = 15.7o in equatorial J2000 system. The origin for the longitude (SGL)
is taken to lie along the intersection of the galactic and supercluster plane.
The reference for longitude lies approximately in the direction α = 42.3o and
δ = 59.5o, where α and δ are the equatorial coordinates.

3.2 Space Velocity and Proper Motion of Stars

The stars remain approximately fixed in the sky. Their relative positions, with
respect to one another, change only slightly with time. This is attributed to
their intrinsic motion. The shift is so small that it is detectable only over a
long time interval with sophisticated instruments.

The velocity of a star with respect to the Sun is called the space velocity.
We can decompose it into the radial and the tangential components. The
radial component, vr, is the velocity of the object along the line of sight, as
shown in Figure 3.6. This is measured by the Doppler shift, explained below,
and is relatively easy to measure. The tangential or transverse component,
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~vt, is perpendicular to the radial direction or the line of sight. This is the
component tangential to the celestial sphere and can point in any direction
on the tangent plane. Hence it is a vector with two components and is denoted
by a vector symbol ~vt. We can, therefore, write the space velocity of a star as

~v = (vr, ~vt) .
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FIGURE 3.6: The position vector of object P is ~r. It is located at coordinates
(r, δ, α). Its space velocity is indicated by ~v. The radial component, vr, is the
component in the direction of ~r and the tangential component, ~vt, lies in
the plane perpendicular to ~r. The vector ~vt is resolved into two components,
(vδ, vα). Drop a perpendicular PA on the x−y plane. The component vδ lies in
the plane OPA and points in the direction of increasing δ at P. The component
vα is parallel to the x− y plane and points in the direction of increasing α at
P. For convenience, we also show this component projected on the x−y plane
at A. Hence the component vδ is tangential to the longitude passing through
P and points in the direction of increasing latitude. Similarly, vα is tangential
to the latitude passing through P and points in the direction of increasing
longitude.

In astronomy, the entire sky is mapped in a grid of latitudes and longitudes.
At any point we can decompose ~vt in terms of its components along the local
latitude and longitude, as explained in Figure 3.6. In equatorial coordinates,
these two components are denoted as vδ and vα, respectively. Hence we can
write, ~vt = (vδ, vα). We are often interested only in the angular velocity of
the star. This is the rate at which the angular position of a star changes with
time and is called the proper velocity, denoted by ~µ. Let us assume that in



46 An Introduction to Astronomy and Astrophysics

a small time interval t, a star traverses a small angle ∆ in the sky. During
this time, it moves along a distance D across the sky. Clearly, D = r∆, where
r is the distance of the star from the Sun and ∆ is in radians. The angular
speed of the star is µ = ∆/t and the tangential speed vt = D/t. Hence we find
that vt = µr. The proper velocity is also related to the tangential velocity by
a similar relationship, ~vt = ~µr. Let µδ and µα represent the rate of change
of the angles δ and α, respectively, with respect to time, that is, µδ = δ̇ and
µα = α̇. You can show as an exercise that the velocity components can be
written as vδ = r µδ, vα = r cos δ µα. Hence we can write the proper velocity
~µ as

~µ = (µδ, cos δ µα) , (3.7)

and the magnitude

µ =
√

µ2
δ + cos δ2µ2

α . (3.8)

The largest known proper motion is that of Barnard’s star, which moves
across the sky at a speed of 10.3′′ per year. This star turns out to be too
faint to be observable by the naked eye. Its angular velocity is equivalent to
traversing the angle subtended by the diameter of the moon in less than 200
years.

3.2.1 Doppler Effect

O S

v
c

FIGURE 3.7: A source S moving away from an observer O at speed v emits
light of wavelength λ0. Due to the Doppler effect, the wavelength λ observed
by O is larger than λ0.

Consider a source, S, which is moving away from an observer O at speed v
as shown in Figure 3.7. The source emits radiation at wavelength λ0. The
wavelength seen by the observer, λ = λ0 + ∆λ, turns out to be larger by
an amount ∆λ ≈ λ0(v/c), where c is the speed of light. This relationship is
valid for v << c. Hence the wavelength becomes larger (is red shifted) if the
source is moving away and smaller (is blue shifted) if it is moving toward the
observer. This shift in wavelength is called the Doppler effect. In general, the
source may be moving in any direction, not necessarily along the line of sight.
Let its velocity be denoted by ~v. In this case the Doppler shift is determined
by the component of ~v along the line of sight. Assuming that O is at the
origin of the coordinate system, this is just the radial component vr. Hence
we obtain

∆λ

λ0
≈ vr

c
, (3.9)
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valid for vr << c. This effect can be used to deduce the radial velocity vr of
a star. We discuss this in Chapter 7. In general, it is much easier to measure
the radial velocity of a star in comparison to the angular velocity.

3.3 Parallax

δθ

Star

O

L

r

1 2

FIGURE 3.8: The shift δθ in the angular position of a star as the observer
O moves from position 1 to 2. Here L denotes the distance moved by the
observer perpendicular to the line of sight and r is the distance to the star.

If we observe an object from different positions, as illustrated in Figure 3.8,
we see it in different directions. The difference in the observed direction or
the shift in the angular position of the object is called the parallax. All stars
and galaxies are located at very large distances from Earth in comparison to
typical distances within the solar system. For example, the distance of the
nearest star, beyond the Sun, is about 200,000 times larger in comparison to
the Earth-Sun distance. Due to this large distance, the parallax observable for
a star is very small. The largest parallax arises due to the revolution of Earth.
Even this is very small and can be detected only by very precise measurements.
Furthermore, this measurement is possible only for stars close to us. The shift
is undetectable for stars that are very far away.
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Let r be the distance of a star and L the distance moved by the observer
perpendicular to the line joining the star to the observer, as shown in Figure
3.8. Then the parallax is the angular shift δθ,

δθ =
L

r
. (3.10)

This relationship is valid for small angles. The distance L is also called the
baseline. By measuring δθ, we can estimate the distance of the star.
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FIGURE 3.9: The Sun (S), as observed from Earth (E), appears to move in
a circle in the ecliptic plane. A star A which lies directly above the Sun along
the line perpendicular to the ecliptic plane also appears to move in a circle.
A star B at any other position appears to move in an ellipse. A star C which
lies in the ecliptic plane, shows a straight line motion.

In order to measure astronomical distances, we need large baselines, such
as the Earth’s orbit around the Sun. What is measured is the shift in the
angular position of a star with respect to the distant background stars due
to the annual motion of the Earth. This is convenient because the angular
positions of the distant stars remain approximately fixed. Hence the shift in
the relative angular position of a star with respect to a distant star directly
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gives a measure of parallax. This method is useful for stars at distances of less
than about 100 pc.

Due to the annual motion of Earth, a star appears to move in an elliptical
orbit. The eccentricity of the ellipse is determined by the angular position
of the star, as shown in Figure 3.9. The angle subtended by the semi-major
axis of this ellipse is called the annual parallax π (Figure 3.10). It is the same
as the angle subtended by the orbital radius of Earth (1 AU) at the star. If
π = 1′′, then the distance to the star is defined to be 1 parsec (pc). Because
1 radian = 206, 265′′, this implies that if the angle subtended δθ = 1′′, then
the distance

r =
1 AU

δθ
= 206, 265 AU .

Hence we find that 1 pc = 206265 AU = 3.26 light years.
The stars themselves are in motion with respect to the Sun. Therefore, the

observed parallax of a star also depends on its proper motion µ. The distance
as well as µ are both extracted simultaneously by parallax measurements.
The proper motion of all stars is observed to be approximately independent
of time. Hence this gives a contribution to parallax that increases linearly
with time (t) in a fixed direction, that is, δθ = µt. In contrast, as discussed
above, the star appears to move in an ellipse due to the annual motion of the
Earth. Hence this contribution does not show a linear dependence on time
and also changes direction. In particular, it becomes zero after one complete
year. Due to the different time dependences of these two components, they can
be separated by making a large number of measurements at different times.
Hence we can extract both the proper motion and the distance of a star.

O

π

FIGURE 3.10: Due to the annual motion of the Earth, the stars appear to
move in an ellipse. The parallax π is the angle subtended by the semi-major
axis of this ellipse at the position of the observer O.

The parallax method is the only direct method for measuring astronom-
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ical distances. All other methods rely on some physical property of a star,
through which we can deduce its luminosity. Hence the extracted distance
may depend on assumptions about its physical properties. At visible frequen-
cies, using Earth-based telescopes, this technique has been used to measure
distances on the order of 50 to 100 pc. For larger distances, the angular shifts
become too small to be measurable due to distortions caused by the atmo-
sphere and other effects. Recent measurements at microwave frequencies using
Very Long Baseline Interferometry (VLBI) have extended this range to dis-
tances on the order of 1 Kpc. A futuristic space-based observatory, Space
Interferometry Mission (SIM), plans to extend the distance measurement at
visible wavelengths to 1 Kpc using direct parallax.

3.4 Aberration
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FIGURE 3.11: The angular position of an object appears shifted to an
observer in motion due to the aberration effect. Here the observer O is moving
at velocity ~u along the x-axis. In the rest frame the star is located at an angle
θ and the velocity vector of light emitted by the star is ~v. However due to the
motion of O, she will observe the velocity vector of light to be ~v ′ = ~v − ~u.
This leads to a shift in the angular position of the star.

Another effect that leads to a shift in the angular positions of stars is aber-
ration. Anyone can experience this phenomenon by taking a brisk walk or by
riding a bicycle in rain. Let us assume that an observer at rest sees the rain
drops falling vertically downwards. They would appear to strike at an angle
to an observer in motion. She will need to tilt her umbrella slightly forward
in order to avoid getting wet. The situation can be understood by considering
relative velocity. Consider an observer O moving at velocity ~u along the x-axis,
as shown in Figure 3.11. Let the true velocity of rain be ~v. This is the velocity
observed by O if she was at rest. However since O is in motion, she will observe
the velocity to be ~v ′ = ~v−~u. As shown in Figure 3.11, ~v = −v cos θx̂−v sin θŷ,
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and ~u = ux̂. Hence the angle θ′ that ~v ′ makes with the x-axis is given by

tan θ′ =
sin θ

cos θ + u
v

(3.11)

In application to stars, we simply need to replace the rain with starlight.
Hence if the position of the star in the rest frame is at an angle θ with respect
to the direction of motion of the observer, the observed position θ′ is given by
Equation 3.11 with v replaced by c, the velocity of light. The aberration effect
also causes small angular shifts in the positions of stars due to the annual
motion of the Earth. It is clear that the effect arises due to finite speed of
light and the shift is of order u/c for small u.

3.5 Coordinate Transformations
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FIGURE 3.12: The coordinate system, (x′, y′, z′), is obtained by a counter-
clockwise rotation of the system, (x, y, z), about the z-axis by an angle φ. The
angular coordinates of the point P in the (x, y, z) and (x′, y′, z′) systems are
(β, α) and (β′, α′), respectively.

We next consider the transformation among different coordinate systems. Con-
sider an object P, whose angular coordinates are (β, α) and (β′, α′) in the
coordinate systems (x, y, z) and (x′, y′, z′), respectively. Here β, β′ denote the
latitudes and α, α′ the azimuthal angles. We are interested in determining
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the relationship between these angular coordinates. In general, the system
(x′, y′, z′) is related to (x, y, z) by three angles, which can be chosen to be the
Euler angles. This is discussed in more detail below. Here we first consider
some special cases.

Let’s first assume that the system (x′, y′, z′) is related to (x, y, z) by a
counterclockwise rotation φ about the z-axis, as shown in Figure 3.12. In this
case it is clear that

β′ = β, α′ = α− φ . (3.12)
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FIGURE 3.13: The coordinate system, (x′, y′, z′), is obtained by a clockwise
rotation of the system (x, y, z) about the x-axis by an angle θ.

Next we consider a clockwise rotation by an angle θ about the x-axis as
shown in Figure 3.13. In this case the coordinates of any point P in the two
systems are related by

x′ = x ,

y′ = cos θ y − sin θ z ,

z′ = sin θ y + cos θ z . (3.13)

In terms of the angular coordinates, we have,

x = cosβ cosα ,

y = cosβ sinα ,

z = sinβ , (3.14)
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with the corresponding relationships for the primed coordinates. Here we are
only interested in the angular coordinates and hence have set the distance of
the source equal to unity. Hence we obtain

cosβ′ cosα′ = cosβ cosα ,

cosβ′ sinα′ = cos θ cosβ sinα− sin θ sinβ ,

sinβ′ = sin θ cosβ sinα+ cos θ sinβ . (3.15)

We can use these relationships to extract β′ and α′. The angle β′ can be
extracted directly by using the third equation in Equation 3.15. We can next
use the first two equations to extract α′. Both of these equations are required
to unambiguously fix the quadrant in which this angle lies.
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FIGURE 3.14: The three Euler rotations for transformation from coordinate
system (x, y, z) to (x′, y′, z′).

In the most general case, the system (x′, y′, z′) is related to (x, y, z) by the
three Euler angles, as shown in Figure 3.14. We first obtain the system (a, b, c)
by a rotation about the z-axis by an angle φ. Next we make a rotation about
the a-axis by an angle θ to obtain the system (a′, b′, c′) and finally a rotation
about the c′-axis by an angle ψ to obtain (x′, y′, z′). The angles φ, θ, ψ are



54 An Introduction to Astronomy and Astrophysics

called the Euler angles. We notice that each of these three transformations
correspond to the two special cases discussed above. Hence we can obtain the
general transformation using the results of these special cases.

Let’s now use the Euler angles to determine the transformation between
the equatorial, (x, y, z), and the galactic, (x′, y′, z′), coordinates. We will only
indicate the steps required without giving detailed formulae. In the equatorial
coordinates, the galactic pole (z′) and the galactic center (x′) are located at
(δ = 27.13o, α = 192.86o) and (δ = −28.94o, α = 266.40o), respectively.
We first determine the line of intersection of the (x, y) and (x′, y′) planes.
This line is perpendicular to both the z- and z′-axes. Let us assume that
this line is located at an angle φ from the x-axis (in x − y plane). We rotate
about the z-axis to align the x-axis with the line of intersection, giving us the
new coordinate system (a, b, c) as shown in Figure 3.14(a). Here the c-axis,
the polar axis of the new frame, coincides with the z-axis. We determine the
location of the galactic pole and the galactic center in system (a, b, c). Let the
angle between z- or c-axis and the z′-axis be θ. The a-axis is perpendicular to
both the c-axis and z′-axis. Hence a rotation about the a-axis by θ aligns the c-
axis with the z′-axis, as shown in Figure 3.14(b). The new (a′, b′) plane is now
also aligned with the (x′, y′) plane. Determine the location of galactic center
(x′) in the (a′, b′, c′) coordinates. Let it make an angle ψ with the a′-axis. Then
a rotation about the c′-axis by angle ψ gives us the desired transformation,
as shown in Figure 3.14(c).

3.5.1 Transformation between Equatorial and Ecliptic Coor-
dinate Systems

We next explicitly determine the transformation between the equatorial and
the ecliptic coordinate systems. These two coordinate systems use the same
reference, the vernal equinox, for the azimuthal angle. The ecliptic pole is
aligned at an angle θ = 23o26′ with respect to the equatorial pole, as shown
in Figure 3.15. We are interested in finding the ecliptic angular coordinates
(β, λ), given the equatorial coordinates (δ, α). Here β, λ denote the ecliptic
latitude and longitude, respectively. The relationship is given by Equation
3.15 with the following substitutions

β′ → β, α′ → λ, β → δ, α→ α, θ → −θ .

We need to change θ → −θ because we need to rotate counterclockwise about
the vernal equinox, as shown in Figure 3.15. These substitutions give us

cosβ cosλ = cos δ cosα ,

cosβ sinλ = cos θ cos δ sinα+ sin θ sin δ ,

sinβ = − sin θ cos δ sinα+ cos θ sin δ , (3.16)

from which we can determine β and λ.
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FIGURE 3.15: Transformation between the equatorial (x, y, z) and the eclip-
tic (x′, y′, z′) coordinate systems. The x- and x′-axes both point toward the
vernal equinox. The transformation is obtained by a counterclockwise rotation
by angle θ = 23o26′ about the x-axis.

3.5.2 Precession of Equinoxes

The rotation axis of Earth undergoes precession due to torque exerted by the
Sun and the Moon. It slowly revolves around the ecliptic pole at the rate of
approximately 50′′ per year. The equatorial plane, which is perpendicular to
this axis, also shifts due to this effect. In particular, the line of intersection of
the equatorial and ecliptic planes, and hence the vernal equinox, also moves
clockwise along the ecliptic plane at the same rate. The period of this pre-
cession is roughly 26,000 years. The rotation axis currently points roughly in
the direction of the star Polaris. After 13,000 years its angle would change
by roughly 47o. Hence the night sky would look very different at that time.
Furthermore, the current night sky is very different from what was seen in
ancient times.

Due to this effect, the coordinates of astronomical sources change slowly in
both the equatorial and ecliptic coordinate systems. The change in the ecliptic
coordinates is easily obtained. The ecliptic plane and the pole are fixed. Hence
the latitude β does not change. The azimuthal coordinate λ changes at the
rate dλ/dt ≈ 50′′ per year. Using this, we can also obtain the rate at which
the equatorial coordinates of an object change due to precession.
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3.5.3 Equatorial Mounting of a Telescope

Declination axis

Earth's axis

of rotation

Polar axis

FIGURE 3.16: The two axes of rotation of a telescope in equatorial mount.
One of the axes, the polar or the hour axis, is taken parallel to the Earth’s
axis of rotation. The declination axis is perpendicular to the hour axis.

In an equatorial mounting of a telescope one of the axes is taken to be parallel
to the axis of rotation of the Earth. This is called the polar or the hour axis.
The other axis, perpendicular to the hour axis, is called the declination axis
(see Figure 3.16). While viewing any object in the sky it is necessary to keep
the telescope pointing toward it for an extended period of time. In order to
do so, one needs to continuously rotate the telescope to compensate for the
Earth’s rotation. In the equatorial mount, this is easily accomplished because
we simply need to rotate about the hour axis at the same rate as the rotation
of the Earth, but in the opposite direction. For all other mounts it is necessary
to rotate the telescope simultaneously about both its axes.

We next describe how we can obtain the equatorial coordinates of an object
using this mount. Because one of the axes is chosen to be the axis of rotation
of Earth, the declination of an object can be directly obtained. It corresponds
to the amount by which the telescope has to be rotated about the declination
axis in order to point to the object and can be directly read off from the
declination dial of the telescope. In order to obtain the RA, we first need to
choose a reference for the azimuthal angle and locate the position of vernal
equinox with respect to this reference. The reference is conveniently chosen to
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be the direction where the meridian intersects the equatorial plane toward the
south, as shown in Figure 3.17. Let Γ denote the angle to the vernal equinox
and h the hour angle of the source with respect to this reference. The hour
angle corresponds to the rotation about the hour axis and is read off the hour
angle dial of the telescope. Due to the rotation of Earth, both Γ and h increase
at a steady rate. The right ascension α is given by

Γ = h+ α . (3.17)

In practice it is convenient to determine the location of the vernal equinox
by first finding the h of an easily recognizable star and using the catalogs
to determine its α. The hour angle of the vernal equinox is then given by
Equation 3.17.

N S

Z

meridian

O

γ P

Ref

h
α

Γ

FIGURE 3.17: An illustration of equatorial mount. Here the observer is
located at the center. The great circle NZS is the observer’s meridian. The
hour angle of a source P is measured clockwise from the reference point (Ref)
on the celestial equatorial plane. Here γ shows the position of the vernal
equinox. The angle between the vernal equinox and the source P is the right
ascension α.

Exercises

3.1 The relationship between Cartesian and spherical polar coordinates is
given in Equation 3.3. (a) Express x, y, z in terms of r and the equatorial
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coordinates (α, δ). (b) In an equatorial grid, the Cartesian coordinates
of a star are x = 10.0, y = 15.0, z = 6.0 in some chosen units. Determine
its distance r and the angular coordinates α and δ. (c) Repeat (b) for
x = −10.0, y = −15.0, z = 6.0.

3.2 The proper motion of Barnard’s star is 10.3′′ per year. It is located at a
distance of 1.834 pc. Determine its transverse speed, vt, in Km/s.

3.3 Consider a star that is moving away from us at a speed of 300 Km/s.
It emits radiation of wavelength 500 nm. Determine the Doppler shift,
∆λ, and the observed wavelength, λ.

3.4 Let ~µ represent the proper or angular velocity of a star. We define
µδ = δ̇ = dδ/dt and µα = α̇ = dα/dt, where δ and α represent the
Dec and RA of the star. Show that the components of the space velocity
~v are given by vδ = rµδ and vα = r cos δµα, where r is the distance of
the star. Hence prove Equation 3.7. Hint: First consider a small angu-
lar displacement, ∆δ, along the longitude in time ∆t. Find the distance
traveled and hence determine the velocity. Repeat this for a small dis-
placement along the latitude. Note that the two displacements can be
considered independently.

3.5 Recall that at the summer solstice, the Sun never sets at latitudes close
to the North Pole. (a) Find the range of latitudes for which this is true.
(b) At any latitude l there exists a group of stars that always remain
either above or below the horizon. These are called circumpolar stars.
Find the range of declinations for these stars at latitude l. (c) Determine
the names of a few bright circumpolar stars visible at your location.
Locate them in the night sky and track their motion by observing them
at different times.

3.6 Using the precession rate of 50′′ per year, verify that the period of pre-
cession is roughly 26,000 years.

3.7 Determine the inverse transformation from the ecliptic to equatorial
coordinate system, that is, express the equatorial coordinates of a point
in terms of its ecliptic coordinates.

3.8 Determine the rate at which the equatorial coordinates of a source
change due to precession. Start by differentiating the equations obtained
in the previous exercise with respect to time. This gives us dδ/dt and
dα/dt in terms of β, λ, dλ/dt and the transformation angle θ = 23o26′.
Next, eliminate β, λ in terms of δ and α to obtain the final result.

3.9 Determine the transformation between the equatorial and galactic co-
ordinate systems following the procedure explained in the text. The
galactic pole is located at δ = 27.13o and α = 192.86o. The galactic
center is located at δ = −28.94o and α = 266.40o.
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4.1 Introduction

We observe the stars and galaxies through the electromagnetic radiation they
emit. We receive this radiation over a wide range of frequencies. In this chap-
ter we will define terms such as intensity, flux density, and luminosity that
characterize the observed radiation. The total amount of radiation emitted by
a source per unit time is called its luminosity. This is a measure of the in-
trinsic brightness of the source. The units of luminosity are Joules per second
(J/s), also called Watts (W). We denote the luminosity of any object with
the symbol L. We are often interested in the radiation emitted in a narrow
band of frequencies, centered at some frequency ν. This is characterized by
the specific luminosity Lν , which is defined as the energy emitted per unit
time per unit frequency interval. The unit of frequency is Hz (Hertz). Hence
the unit of Lν is W/Hz.

The radiation that we receive from any astronomical object depends not
only upon the luminosity of the source but also many other factors such as its
distance, the attenuation of radiation during propagation, the area over which
the radiation is received, etc. We observe this radiation with our eyes or with
instruments such as telescopes, radio antennae, gamma ray detectors, etc. The
human eye receives radiation over a relatively small area. Furthermore, it is

59



60 An Introduction to Astronomy and Astrophysics

sensitive only to the frequencies in the visible range. A telescope, in contrast,
has a much wider aperture and hence collects more radiation in comparison to
the eye. The amount of light or radiation an instrument receives also depends
on the angle of observation. A telescope that points directly toward the source
receives more light in comparison to one that points in a different direction.
Furthermore, the amount of radiation an instrument detects depends on its
sensitivity, which is a function of the frequency of radiation. It is useful to
characterize the radiation field in terms of quantities such as flux and intensity,
which are independent of these effects.

S
r

FIGURE 4.1: The radiation received from an isotropic source S is the same
at all points at a distance r.

n

θ

A∆

FIGURE 4.2: A beam of radiation, incident on a surface of area ∆A at an
angle θ to the normal n̂.
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4.2 Flux Density and Intensity

Consider a source, such as the Sun, that emits radiation isotropically. Let us
denote the luminosity of the Sun by L. Imagine an observer at a distance r
from the Sun, as shown in Figure 4.1. At the position of the observer, the
energy emitted by the Sun is distributed uniformly over the sphere of radius
r. Hence the energy received by this observer, per unit area, is given by

F =
L

4πr2
. (4.1)

This is called the flux density. For an isotropic source, it decreases with dis-
tance as 1/r2. The units of flux density (F ) are J/(s·m2). The total flux passing
through the spherical surface of radius r is equal to the luminosity L of the
source.

In the above example we considered the flux passing through an area per-
pendicular to the incident solar radiation. This gives us the flux density at
normal incidence. In general the area may be inclined at any angle to the
incident radiation. Let us assume that radiative energy ∆E is incident on a
small surface of area ∆A in a small time interval ∆t as shown in Figure 4.2.
Let n̂ be a unit normal to area A. The radiation is incident at an angle θ to
n̂. The flux density F is equal to the energy per unit area per unit time, that
is,

F ≈ ∆E
∆A ·∆t . (4.2)

Here we have assumed that the radiation is uniform over a small time interval
∆t and area ∆A. Eventually these intervals will be taken to be infinitesimally
small. In this limit, the approximate equality in Equation 4.2 becomes exact.

We are often interested in the radiation field in a narrow range of frequen-
cies. Let us assume that we receive the energy ∆E in a small frequency band
∆ν centered at frequency ν. The specific flux density Fν is defined as the flux
density per unit frequency interval, that is,

Fν ≈ ∆E
∆A ·∆t ·∆ν . (4.3)

The units of Fν are W/(m2 Hz). Astronomers also use Janskys (Jy),

1Jy = 10−26 W

m2 Hz
(4.4)

This unit is particularly useful in radio astronomy because the flux density of
astronomical radio sources is typically of this order of magnitude. The energy
received at Earth from such sources is very small.

Let’s consider a radio source with flux density equal to 1 Jy. Let’s assume
that we are making observations at 1 GHz using an antenna with an aperture
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of diameter 1 m2. For simplicity we assume that the flux is constant over an
interval of 1 GHz, centered at ν0 = 1 GHz, and zero outside this interval.
We are interested in the total flux received by the antenna. The radiative
energy collected by such an antenna in 1 day (≈ 105 s) is roughly equal
to 10−26 × 109 × 105 = 10−12 Joules. The factor 109 arises because we are
integrating the flux over a frequency interval of 1 GHz = 109 Hz = 109 1/s.
We can compare this with a typical macroscopic energy such as the energy
required in lifting a paper. Let’s assume that the paper has a mass of 1 gm and
we need to lift it by 10 cm. The energy required is equal to the gravitational
force mg times the distance h moved by the paper. Here m is the mass of the
paper and the acceleration due to gravity, g = 9.8 m/s2. The energy required
in lifting the paper is therefore mgh ≈ 10−3 Joules. Hence the total energy
collected by the antenna in a day is nine orders of magnitude smaller than
this.

n

θ

A

∆Ω

∆

FIGURE 4.3: Radiation incident on a small area ∆A at an angle θ to normal,
contained within a small solid angle ∆Ω.

In general, the radiation may be incident on a surface from several direc-
tions. For example, the sky constitutes a hemispherical source of radiation,
in contrast to a star, which is almost a point object. Hence the radiation
from the sky is incident upon any small area element at Earth from all pos-
sible directions in the upper hemisphere. We, therefore, define an observable,
called the intensity, which contains information about the relative proportion
of radiative energy incident from different directions. Let the radiative energy
impinging on a small area element ∆A in time ∆t from a direction θ relative
to the normal, contained within a solid angle ∆Ω, be equal to ∆E (see Figure
4.3). The concept of a solid angle is reviewed in Section 4.7. Furthermore, let
the radiation observed lie in a narrow frequency range [ν, ν+∆ν]. The specific
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intensity Iν is defined as

Iν ≈ ∆E
cos θ ·∆A ·∆t ·∆Ω ·∆ν , (4.5)

that is, it is the energy per unit time per unit area, projected normal to
the angle of incidence, per unit solid angle and per unit frequency interval.
The specific intensity, in general, depends on the time of observation, the
direction of observation, and the frequency of radiation. It contains complete
information about the strength of the radiation field at any given point.

The approximate equality in Equation 4.5 becomes exact when the small
quantities, ∆E , ∆A, ∆t, ∆Ω, and ∆ν, become infinitesimal. These are denoted
by dE , dA, dt, dΩ, and dν, respectively. We obtain

Iν =
dE

cos θ · dA · dt · dΩ · dν . (4.6)

The units of Iν are
Watts

m2 Hz steradian
.

The total intensity is defined as the integral of the specific intensity over all
frequencies,

I =

∫ ∞

0

Iνdν . (4.7)

We also define the flux density Fν at frequency ν by integrating over the
radiation received from all directions, that is, the entire solid angle,

Fν =

∫

4π

Iν cos θdΩ =

∫ 2π

0

dφ

∫ 1

−1

d cos θIν cos θ .

The total flux density is similarly related to the total intensity I by

F =

∫

I cos θdΩ .

The flux received by a surface of area A is defined as the radiative power
passing through the surface

Lν =

∫

A

dAFν ,

and similarly,

L =

∫

A

dAF .

Lν and L have units of W/Hz and W respectively. The total flux or luminosity
(L or Lν) is defined as the flux passing through a closed surface encompassing
a source.

We next consider some examples. The flux density of solar radiation at
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Earth, integrated over all frequencies, is FE = 1, 400 J/(s·m2). Because the
Sun is an isotropic source, its luminosity is related to its flux density by the
relationship

FE =
LSun

4πR2
S−E

,

where RS−E is the distance of the Sun from Earth. This yields the solar
luminosity LSun = 3.9 × 1026 J/s. We next determine the intensity of the
solar radiation at Earth. A person standing at Earth receives solar radiation
only from the direction of the solar disk. Hence the intensity is non-zero only
for a small range of directions corresponding to the solar disk. Let RS be the
radius of the Sun. The solid angle subtended by the Sun at any point on Earth
is

∆Ω ≈ cross− sectional area of Sun

(Distance)2
=

πR2
S

R2
S−E

.

This is valid in the limit RS << RS−E . The radiation is, therefore, received
only within this solid angle. Consider an observer O at the surface of the
Earth, as shown in Figure 4.4. The z-axis is normal to the surface at the posi-
tion O. The radiation from the Sun is received at an angle θ0 from normal. We
use polar coordinates with the normal to the surface as the z-axis. The solar
radiation is received along the z′-axis within a solid angle ∆Ω. Let Iν(θ, φ) be
the specific intensity of this radiation at any position (θ, φ), where the angular
coordinates are measured with respect to the polar axis z. This angular posi-
tion is denoted by the dashed line in Figure 4.4. The corresponding angular
coordinates in terms of the polar axis z′ are denoted as (θ′, φ′).

∆Ω

θ0

θ’

z

z’

β

O

(θ,φ)

FIGURE 4.4: The solar radiation, received at an angle θ0 with respect to the
z-axis by an observer O within a solid angle ∆Ω centered around the z′-axis.
The z-axis is taken to be normal to the surface at the position of the observer
O.
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We can express Iν(θ, φ) as

Iν(θ, φ) = Kν if θ′ ≤ β ,

= 0 if θ′ > β , (4.8)

where β ≈ RS/RS−E is the angle subtended by the radius of the Sun. As
we will see, Kν is related to the flux density at the surface of the Sun. On
the right-hand side of Equation 4.8 we have used the z′-axis to specify the
boundary of the Sun. It is reasonable to assume that the radiation received at
O from different points on the Sun is the same. In that case, Kν depends only
on the frequency but does not depend on the coordinates (θ′, φ′). The total
intensity can be obtained by integrating this equation over frequency. Because
the radiation is contained within a solid angle ∆Ω, the specific flux density at
frequency ν is approximately equal to Kν cos θ0∆Ω. The factor cos θ0 arises
because the area on which the flux is being computed is oriented at an angle
θ0 with respect to the solar radiation. We can derive this formula for the flux
density more rigorously by integrating Iν over the solid angle subtended by
the Sun. We obtain

Fν =

∫

Iν cos θdΩ
′ =

∫ π

0

sin θ′dθ′
∫ 2π

0

dφ′Iν cos θ

=

∫ 1

−1

d cos θ′
∫ 2π

0

dφ′Iν cos θ .

The integral is complicated because cos θ has a complicated dependence on θ′

and φ′. However, we can simplify it by making the approximation

cos θ ≈ cos θ0 = const .

This follows because Iν is non-zero only over a small range of values of the
polar angle θ centered around θ0. We can pull the cos θ0 factor out of the
integral over the angular variables. The resulting integral over the angular
coordinates simply gives the solid angle subtended by the Sun. We, therefore,
find

Fν ≈ Kν cos θ0∆Ω . (4.9)

We next relate this to the solar radiant energy received at Earth. The
solar luminosity, integrated over frequencies, is LSun = 3.9× 1033 ergs/s. The
integrated solar flux density, at normal incidence (θ0 = 0), at the surface of
the Earth is FE = LSun/(4πR

2
S−E) = 1, 400 J/(s· m2). This is related to the

flux given in Equation 4.9, integrated over frequencies. The only quantity in
Equation 4.9, which depends on frequency is Kν . Hence we obtain

FE = ∆Ω

∫ ∞

0

Kνdν = K∆Ω .
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Here K is the integral of Kν over all frequencies. This implies that

K =
FE

∆Ω
=

LSun

4π2R2
S

=
FS

π
,

where FS is the flux density at normal incidence at the surface of the Sun.
Hence we find that the factor K (or Kν) and hence the intensity is a measure
of the flux density at the surface of the Sun and is independent of the distance
of the observer from the source.

The independence of intensity with respect to distance is a general prop-
erty. We can understand this by considering a simple example. Consider an
isotropic source depicted in Figure 4.1. The flux density at a distance r de-
creases as 1/r2. The intensity is equal to flux density per unit solid angle. The
solid angle subtended by a detector of fixed area also decreases as 1/r2. The
two 1/r2 factors cancel and we find that the intensity is independent of r

We next consider the radiation received from a star. The main difference
is that a star subtends a very small solid angle. We can continue to use the
same formulae as for the Sun, but with the value of ∆Ω taken to be extremely
small. Using Equation 4.9, we find Fν = Kν∆Ωcos θ∗, where ∆Ω = πR2

∗/r
2 is

the solid angle subtended by the star, R∗ is its radius and θ∗ its polar angle,
as in the case of Sun.

As an example, we compute the flux density of the brightest star, Sirius, at
Earth. Its luminosity is roughly 25 times that of the Sun and its distance from
Earth is 2.6 pc. Hence its flux density F at normal incidence, is 1.3 × 10−7

J/(s· m2).

4.3 Blackbody Radiation

All objects emit radiation that is characterized by their temperature. For ex-
ample, the Sun, which has a surface temperature of 5,770K (Kelvin), emits
radiation at visible frequencies. Similarly, many objects glow, that is, emit
visible radiation, when heated to high temperatures. In fact, all objects emit
radiation as long as their temperature is different from absolute zero (0K or
−273oC). For example, the walls of our room radiate energy that is character-
ized by the room temperature (∼300K)1. The radiation emitted by an object
at this temperature, however, is very different from that emitted by hotter
objects, such as the Sun. This radiation cannot be observed by the human
eye because it is emitted predominantly at infrared frequencies. The mean
frequency of emitted radiation decreases with the temperature of the object.

We next consider radiation that is incident upon an object. This radiation

1The notation ∼ means roughly equal to.
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is partially absorbed, partially reflected, and partially transmitted by the ob-
ject. The precise fraction that is absorbed, reflected, or transmitted depends
on the nature of the object and the frequency of the incident wave. For exam-
ple, a piece of wood does not allow transmission of visible light. In contrast,
glass allows almost all the light to be transmitted. However, glass does not al-
low free transmission at all frequencies. It is transparent at visible frequencies
but becomes opaque at lower (infrared) and higher (ultraviolet) frequencies.
Another very interesting example is the Earth’s atmosphere, which is almost
perfectly transparent to visible radiation but becomes highly opaque as we
move to higher and lower frequencies.

Besides transmission, an object also reflects and absorbs radiation incident
upon it. Hence as the solar radiation falls upon Earth, part of it is absorbed
and the remainder reflected back. The reflected radiation has the same fre-
quency as the incident radiation. It is due to this reflected solar radiation,
which lies at visible frequencies, that we are able to see objects during the
daytime. The part that is absorbed by Earth is later emitted at infrared fre-
quencies. Notice that the Earth-Sun system is at steady state. The mean
temperature of the Sun as well as the Earth does not change appreciably with
time. Hence the radiation that Earth absorbs must be equal to the radiation
it emits. Or else its mean temperature would change.

In general, the amount of radiation an object absorbs depends on the ob-
ject as well as the frequency of the incident radiation. A blackbody is defined
as an ideal object that absorbs all the radiation incident upon itself. The term
blackbody is well suited because a body appears black to us if it absorbs all
the visible light incident upon itself. However, the term blackbody is used here
in a more general sense. An ideal blackbody absorbs radiation of all frequen-
cies, not just the visible light. None of the incident radiation is reflected or
transmitted. The blackbody also emits radiation, called blackbody radiation,
with a characteristic spectrum called the blackbody spectrum. The spectrum
is fixed by a single parameter, the temperature of the object. The specific
intensity Bν of a blackbody radiation emitted by a body at temperature T
(in Kelvin) can be expressed as

Bν(T ) =
2hν3/c2

ehν/kT − 1
, (4.10)

where ν is the frequency, h is Planck’s constant, c is the velocity of light, and
k is the Boltzmann constant. We can obtain the specific intensity in terms of
the wavelength λ = c/ν by making a change in variables. We obtain

Bλ =
2hc2

λ5
1

ehc/kTλ − 1
. (4.11)

The intensity Bλ is defined such that

∫ ∞

0

dλBλ =

∫ ∞

0

dνBν = B . (4.12)
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In Figure 4.5 we show the wavelength dependence of specific intensity for
two different temperatures. The peak position of the blackbody spectrum is
given by Wien’s displacement law, which states that

λmaxT = 0.290 cm K , (4.13)

where λmax is the wavelength at which Bλ is maximum. The total intensity of
blackbody radiation is obtained by integrating the specific intensity over all
frequencies. We find

B = σT 4/π , (4.14)

where
σ = 5.670× 10−5 erg

s cm2 K4
, (4.15)

is the Stefan–Boltzmann constant. The total luminosity of a blackbody is

L = σT 4S , (4.16)

where S is its surface area.
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FIGURE 4.5: The wavelength dependence of the blackbody specific inten-
sity, Bλ, in units of Mega Watts/(m2·m·steradian) corresponding to temper-
atures, T=300K, 500K.

An ideal blackbody emits the maximum energy possible for an object at a
particular temperature. All other objects at the same temperature have lower
emission. We can account for this difference by introducing an efficiency factor
ǫ in the formula for total luminosity. Hence the luminosity of a real body can
be expressed as

L = ǫσT 4S , (4.17)
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where the factor ǫ lies in the range 0 to 1. An ideal blackbody can be con-
structed by making a cavity whose walls are opaque. There is a small hole
through which radiation can enter the cavity. This radiation interacts with the
walls of the cavity and undergoes repeated reflections. It also gets partially
absorbed and re-emitted by the walls. However, because the walls are opaque,
it will never leave the cavity, which, therefore, acts as a perfect absorber. The
walls eventually acquire thermal equilibrium at a certain temperature T . The
radiation in the cavity now reaches a steady state with no further exchange
of energy with the cavity walls. We will also assume that the cavity is suffi-
ciently large so that the geometry of the walls does not affect the nature of
the radiation field. This can of course be true only if we are not too close to
the cavity walls. The radiation in such a cavity is almost the same as an ideal
blackbody radiation. This radiation can be sampled through a small hole in
the cavity walls.

The radiation inside the cavity is isotropic because the intensity does not
depend on the direction of observation. At any point the intensity of radiation
is the same in all directions. The intensity in any direction is exactly equal
to that in the opposite direction. Hence the flux density through any area
element is zero. We can explicitly verify this using the formula for the flux
density,

Fν =

∫ π

0

sin θdθ

∫ 2π

0

dφBν cos θ = 0 .

The integral over θ gives zero because Bν is independent of θ. In general, the
flux density of an isotropic radiation field is zero.

It is important to understand that the formula for the specific intensity of a
blackbody radiation, Equation 4.10, is really valid only inside the cavity. This
formula says that the intensity is independent of direction. In other words,
an observer would see exactly the same intensity in all directions. This is
clearly not valid for an observer outside the cavity. Such an observer would
receive radiation only from the direction of the small hole and nothing from
other directions. Hence the radiation is isotropic only inside the cavity and not
outside. However, the frequency dependence of the radiation sampled through
the hole is correctly given by Equation 4.10.

Blackbody radiation plays a central role in astrophysics. The radiation
emitted by stars is well approximated by the blackbody spectrum. A typical
star is spherical symmetric to a very good approximation. Hence it is rea-
sonable to assume that the radiation it emits is independent of the angular
position of the observer with respect to the center of a star. The interiors of
stars are well described by assuming thermal equilibrium. The temperature
of a star slowly decreases with distance from the center. The intensity of ra-
diation at any point inside the star at temperature T is well approximated
by the blackbody formula corresponding to the temperature at that location.
At the surface of the star, however, the conditions of thermal equilibrium are
not satisfied. At this point we have free emission. In contrast to the interior,
the radiation is no longer isotropic. An observer at the surface will receive
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radiation only from half the solid angle, that is, from the interior of the star.
The radiation from the exterior is negligible because it arises only due to the
sparse stellar atmospheres. The spectral dependence of the radiation received
by the observer, however, is correctly described by the blackbody formula.

The concept of blackbody radiation also plays a central role in cosmology.
As we will discuss in Chapter 16, the entire Universe is immersed in a ra-
diation field, called Cosmic Microwave Background Radiation (CMBR). The
temperature of this radiation is 2.73K. It turns out that this is the best black-
body spectrum seen to date. The experimentally observed spectrum matches
the theoretical prediction, Equation 4.5, to one part in 10,000.

4.4 Energy Density in an Isotropic Radiation Field

θ

dA

dx

FIGURE 4.6: An infinitesimal cylindrical volume element dV of length dx
and base area dA.

Consider an isotropic radiation field, such as the blackbody radiation. We are
interested in determining the energy density, that is, energy per unit volume,
of this field at any point. Let the specific intensity of radiation at any point
at frequency ν be Iν . We denote the corresponding energy density by Uν .
Consider an infinitesimal volume element dV in this radiation field, as shown
in Figure 4.6. Let the cross-sectional area of the volume element be dA and
length dx. Let dEν be the radiation contained in this volume in the frequency
interval dν. Then the energy density of the radiation field at frequency ν is

Uν =
dEν

dV dν
. (4.18)
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In order to compute dEν , we consider radiation incident on the walls of the
volume element. We will eventually take the limit, dx → 0, dA → 0. For
convenience, the limiting process is done such that we first take the limit
dx→ 0 and then dA→ 0. In this case we only need to consider the radiation
incident on the upper and lower surfaces. Furthermore, for sufficiently small
dx, all radiation striking the lower surface will leave from the upper surface.
The distance traveled by radiation incident at angle θ to the normal at the
lower surface inside the volume element is dx/ cos θ. Hence the time it spends
inside this volume element is dt = dx/(c cos θ). The energy contained inside
dV due to radiation incident on lower surface is

dE1
ν =

∫

Ω

Iν cos θdAdνdΩdt ,

where the integral is over half the solid angle because only the radiation prop-
agating upward is incident on the lower surface. Hence we find

dE1
ν =

∫

Ω

IνdAdνdΩdx/c = 2πIνdV dν/c ,

where we have used dV = dAdx and the fact that Iν is independent of angles,
that is, the radiation is isotropic. We get an identical contribution dE2

ν due
to radiation striking the upper surface. Adding the two, we obtain

dEν = 4πIνdV dν/c , (4.19)

which gives

Uν =
4πIν
c

. (4.20)

Integrating over all frequencies, we obtain the total energy density U = 4πI/c.
For the blackbody radiation, the intensity is given by Equation 4.14. Hence
we obtain

U =
4σT 4

c
. (4.21)

4.5 Magnitude Scale

In astronomy we use a logarithmic scale to specify the flux density and the
luminosity of astronomical objects. This system originated when early obser-
vations were done with the naked eye, whose response is close to logarithmic.
Although most observations are now made by instruments, this system is still
in use.



72 An Introduction to Astronomy and Astrophysics

4.5.1 Apparent Magnitude

The flux density F received at Earth from a star can be expressed in terms
of the apparent magnitude, m, defined as

m = −2.5 log10
F

F0
,

where F0 is a reference flux density. The constant 2.5 is used for historical
reasons. For two stars with flux densities F1 and F2,

m1 −m2 = −2.5 log10
F1

F2
.

The star with larger m appears less bright. If m1 −m2 = 5, then F2 = 100F1.
The magnitude system is designed to specify the flux of an object with

respect to the flux of some standard source used as a reference. This is con-
venient because measurement of relative flux is often much easier and more
reliable in comparison with the absolute flux. Many instrumental errors as
well as distortions due to atmosphere cancel out when measuring the ratio
of two fluxes but will lead to errors in measurement of an absolute flux. The
magnitude of the reference source is assigned some fixed value, such as zero,
as discussed below.

S
ν

ν

V pg

yellow

FIGURE 4.7: An illustration of the sensitivity function, Sν , of the human
eye (visual V ) and the photographic plate (pg) as a function of the frequency,
ν. The sensitivity of eye peaks at λ ≈ 550 nm corresponding to yellow color.

The flux and hence the observed magnitude depend on the instrument,
which may have different sensitivities at different wavelengths. Hence, what
is measured is

F =

∫ ∞

0

SνFνdν , (4.22)



Photometry 73

where Sν is the sensitivity function of the instrument and ν is the frequency.
For example, the human eye is most sensitive to yellow as shown in Figure
4.7. Its sensitivity decreases at higher and lower frequencies. For comparison,
we also show the sensitivity of a typical photographic plate in Figure 4.7.
The photographic plate is typically more sensitive to higher frequencies in
comparison to the human eye. It is now obsolete but historically played a
very important role in astronomy. We now make more accurate measurements
using photometers. Furthermore, standardized broad band filters, centered at
different frequencies, are used. Some of the standard filters are U , B, V , and R,
which refer to ultraviolet, blue, visual, and red wavelengths, respectively. The
apparent magnitudes of these filters are denoted by mU , mB , mV , and mR,
respectively. These are also denoted simply as U , B, V , and R, respectively.
The effective wavelengths for the U , B, V , and R filters are 365 nm, 445 nm,
551 nm, and 658 nm, respectively. Their full widths at half maximum are
66 nm, 94 nm, 88 nm, and 138 nm, respectively. The visual magnitude mV

corresponds closely to the sensitivity of the human eye.
There exist several different magnitude systems in astronomy correspond-

ing to different choices of the reference flux. One standard system uses the
star Vega as a reference and assigns a value equal to 0.03 for all its apparent
magnitudes, such as U , B, V , and R.

4.5.2 Absolute Magnitude

The apparent magnitude is related to the flux density of an astronomical
object. We also need a measure that quantifies the luminosity or intrinsic
brightness of an object. This is provided by the absolute magnitude, denoted
byM . It is defined as the apparent magnitude of an object when it is placed at
a distance of 10 pc from the observer. For a source that radiates isotropically,
the flux density F (r) in vacuum is proportional to 1/r2, where r is the distance
of the observer from the source. Hence,

F (r)

F (10)
=

(

10 pc

r

)2

, (4.23)

where F (10) is the flux density at a distance of 10 pc. This implies that

m−M = −2.5 log10
F (r)

F (10)
= −2.5 log10

(

10 pc

r

)2

= 5 log10
r

10 pc
. (4.24)

The difference m−M is called the distance modulus because it is a measure of
the distance of the object. The absolute magnitudes corresponding to filters
U , B, V , and R are denoted by MU , MB , MV , and MR, respectively. For
example, the absolute visual magnitude, MV , of the Sun is 4.83. In Equation
4.24, we have ignored the extinction of light due to propagation. This will be
discussed in Chapter 7.

The measurement of absolute magnitude is clearly much more complicated
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in comparison to that of apparent magnitude. It requires knowledge of the dis-
tance from the source. A direct measurement of distance is possible only using
parallax. This can be used only for nearby sources. For larger distances, the
luminosity is deduced indirectly. One often uses the fact that the luminosity
of many sources shows some definite relationship to some other observables.
In some cases, the luminosity is approximately constant for all the sources
belonging to a particular class. Hence one is able to indirectly deduce the
absolute magnitude of these sources.

4.5.3 The Color Index

The color index is defined as the difference in the apparent magnitudes cor-
responding to two different filters. Thus, U −B, B − V are examples of color
indices. It is a measure of the color of an object in comparison to a reference
star such as Vega. Because all the apparent magnitudes of Vega are chosen to
be 0.03, all its color indices are equal to zero. Hence, if for some star U − B
is positive, this means that the object radiates more strongly in blue in com-
parison to ultraviolet relative to the reference star Vega. Using Equation 4.24,
we find that we can also express a color index as the difference in absolute
magnitudes. In particular, we find that

U −B =MU −MB , (4.25)

with similar equations for other color indices.

4.5.4 Bolometric Magnitude

The apparent magnitude is a measure of the flux density received from a star
within a certain wavelength range. It is also useful to have a measure of the
total flux, integrated over all wavelengths. The magnitude corresponding to
this flux is called the bolometric magnitude. It is of course impossible to make
a measurement of the flux over all the wavelengths. In most cases, however,
the flux dies off rapidly beyond a certain wavelength regime. Hence a limited
measurement provides an excellent approximation of the bolometric magni-
tude. The spectrum of many stars peaks at visible or ultraviolet wavelengths.
Their luminosity dies off rapidly as we go to higher frequencies in the ultravio-
let or lower frequencies in the infrared regime. Hence a measurement covering
the infrared, visible and ultraviolet frequencies provides a good estimate of
the bolometric magnitude of these objects.



Photometry 75

4.6 Stellar Temperatures

An important parameter is the temperature at the surface of the star. The
surface temperature determines the nature of radiation, the continuous spec-
tra, the discrete lines and the bands, received from the star. The temperature
is deduced from the observed radiation. Astronomers define several different
temperatures, which depend on some particular property of the radiation re-
ceived. These rely on the fact that the continuum radiation emitted by stars
approximately follows the blackbody spectrum. Hence one tries to deduce the
corresponding blackbody temperature from observations.

4.6.1 Effective Temperature

The effective temperature Te is defined as the temperature of a blackbody
that radiates the same total flux as the star. Consider a star of radius R
located at a distance r from Earth. The flux density at the surface of the star
is FS = σT 4

e , which implies that the luminosity of the star is L = 4πR2FS .
The flux density FE at Earth is given by

FE =
L

4πr2
=
R2

r2
FS =

σδ2T 4
e

4
,

where δ = 2R/r, is its angular diameter. Hence an observation of the flux
density FE and the angular diameter gives an estimate of Te.

All stars, besides the Sun, appear as point-like objects. A direct mea-
surement of their angular diameter is very difficult. For some stars, angular
diameters have been determined using interferometry or lunar occultations.
Furthermore, diameters can be determined under some special circumstances
for stars in binary systems.

4.6.2 Color Temperature

We can also extract the temperature of a star by measuring its apparent
magnitude corresponding to two different filters. Let FE(ν1) and FE(ν2) be
the flux densities of a star observed at Earth at two different frequencies,
ν1 and ν2, respectively. The ratio of the flux densities, assuming that the
radiation emitted follows the blackbody spectrum, is given by

FE(ν1)

FE(ν2)
=
Bν1

(T )

Bν2
(T )

,

where Bν(T ) is the intensity of a blackbody at temperature T . This relation
provides an estimate of temperature, given a measurement of FE(ν1) and
FE(ν2). In practice, one measures the difference in magnitudes corresponding
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to two broad band filters, for example B − V . The difference in magnitudes
at two different frequencies can be expressed as

m1 −m2 = −2.5 log10
FE(ν1)

FE(ν2)
.

In the case of a broad band filter we require the integrated flux density cor-
responding to that filter. Hence the flux densities are computed by using Eq.
4.22 with Fν equal to the blackbody intensity and Sν the sensitivity function
of the filter. The temperature extracted by this procedure is called the color
temperature, Tc. Hence the color indices, such as B − V , provide a measure
of the color temperature of a star.

If a star behaves as a perfect blackbody, then the color temperature would
be the same as the effective temperature. However, in general, stars are not
ideal blackbodies and these temperatures differ from one another. The color
temperature is easiest to extract because it only requires measurement of ap-
parent magnitudes. Hence the early estimates of temperature, made toward
the beginning of the twentieth century, used this measure. The effective tem-
perature can be deduced by spectroscopic measurements. The relationship
between the effective temperature and the color index, B − V , is shown in
Figure 4.8.
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FIGURE 4.8: The effective temperature Te of stars corresponding to differ-
ent values of B − V . The error in effective temperatures ranges roughly from
±2 % to ±5 %. The actual values also depend on other parameters besides
B − V , such as the metallicity of a star. This dependence is not shown in the
above plot. (Data taken from E. Böhm-Vitense, Annual Review of Astronomy

& Astrophysics, 19, 295 (1981).)
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4.7 Appendix: Solid Angle

Consider a spherical shell of radius r, as shown in Figure 4.9. The solid angle
Ω that a segment of the shell of area S subtends at the center of the sphere
is given by

Ω =
S

r2
.

The unit of the solid angle is steradians. As a simple example we can determine
the solid angle subtended by half the spherical shell. The area of this shell is
2πr2. Hence the corresponding solid angle is 2π steradians. The solid angle
subtended by the full sphere is 4π steradians.

Or

S

Ω

FIGURE 4.9: The section S of a spherical shell, with center located at O
and radius r, subtends a solid angle Ω at O.

We are often interested in the solid angle subtended by a small area at
some point. Consider the situation shown in Figure 4.10, where we have a
small flat surface of area A. We are interested in the solid angle it subtends
at point O. This solid angle depends on the orientation of the area element.
Consider the line OP joining O to the point P , located at the center of the
area element. If this line is perpendicular to the area, then the solid angle
subtended is given approximately by

Ω ≈ A

r2
,

where r is the distance of the area element from O. This is an approximate
relation because strictly speaking, the area element should be part of a spher-
ical shell, as shown in Figure 4.9. However, for small area elements, the area
of the curved surface is approximately the same as that of the flat surface.

In general, the line OP may not meet the area at a right angle. Let us
assume that the angle that the normal, n̂, to the surface makes with OP is θ,
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as shown in Figure 4.10b. In this case, the solid angle is given approximately
by

Ω ≈ A cos θ

r2
,

that is, the solid angle subtended by the projected area element normal to
OP .

O

A

P

(a) (b)
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r

r
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n

FIGURE 4.10: (a) A small flat surface of surface area A subtends a solid
angle, approximately equal to A/r2 at O. Here OP is perpendicular to the
surface and its length is equal to r. The area A is assumed to be very small.
(b) Here n̂ denotes a normal to the flat surface A and the line OP makes
an angle θ to normal. The solid angle subtended by a small area A at O is
approximately equal to A cos θ/r2.

Exercises

4.1 The unit of energy is the Joule (J) or erg.

1 J = 1 Kg ·m2/s2 , 1 erg = 1 g · cm2/s2 .

Clearly, 1 J = 107 ergs. (a) The kinetic energy (K.E.) of a particle of
mass M moving at speed v is equal to Mv2/2. Determine the kinetic
energy of a person of mass 60 Kg moving at speed 4 Km/hour. (b) Heat
is also a form of energy. It is caused by the random motions of atoms
and molecules of an object. As we heat an object, the kinetic energies
of these particles increase. The heat capacity of water is 4, 180 J/Kg ·K
or 4,180 Joules per kilogram per degree Centigrade. This means that
to increase the temperature of 1 Kg of water by 1o Centigrade (C), we
need to supply 4,180 Joules of energy. Find the energy required to heat
1 Kg of water at 30oC (room temperature) to 100oC.
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4.2 According to the special theory of relativity, a particle of mass m at rest
has a rest mass energy

E = mc2 . (4.26)

Determine the rest mass energy of a person of mass 60 Kg. Compare
with the kinetic energy, determined in the Exercise 4.1a.

4.3 Consider the diffuse radiation from the sky. Assume that it is uniform
over the entire sky. Mathematically express the intensity received at the
surface of the Earth. You can assume that roughly 20% of the total
radiative energy received from the Sun, above the Earth’s atmosphere,
reaches the surface in the form of diffuse radiation.

4.4 The luminosity of the Sun is 3.839× 1026 W. Its apparent magnitude is
mSun = −26.81. Find its absolute magnitude and the distance modulus.

4.5 Verify the formula for Bλ given in Equation 4.11.

4.6 Integrate the formula for blackbody specific intensity, Bν , in order to
obtain an expression for the Stefan–Boltzmann constant. You can use
the integral

∫ ∞

0

dx
x3

ex − 1
=
π4

15
. (4.27)

4.7 Show that the radiation flux at the surface of a star is F = σT 4. Hence
show that its total luminosity is given by Equation 4.16.

4.8 The surface temperature of the Sun is 5770K. Write down the formula
for the specific intensity, Iν , of the solar radiation received by an ob-
server at Earth. You may assume that the Sun is an ideal blackbody.
You must carefully specify both the frequency as well as angular de-
pendence of Iν . Compute the solar flux at Earth and compare with the
measured value 1,400 W/m2.

4.9 Find the peak wavelength and the corresponding frequency of solar ra-
diation, given that it is a blackbody at temperature T = 5770K.

4.10 Make a rough estimate of Earth’s mean temperature T by assuming
that it is a perfect blackbody. Assume that it absorbs all the solar radi-
ation incident upon it and radiates it as a blackbody at temperature T .
Assume that Earth is spherically symmetric. Numerically estimate the
value of T .

4.11 Find the peak position of wavelength and the corresponding frequency
for the CMBR.
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Chapter 5

Gravitation and Kepler’s Laws
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The gravitational force plays the most prominent role in astrophysics. It is
responsible for holding the solar system, the galaxies, and the galaxy clusters
together. The gravitational force is well described by the Newton’s inverse
square law. Consider two point particles of mass M and m. Here we treat
heavenly bodies, such as Sun, Earth, etc., as particles. Let ~r denote the posi-
tion vector of m with respect to M , as shown in Figure 5.1. The force on m
due to M is given by

~F = −GMmr̂

r2
, (5.1)

where r̂ is the unit vector along ~r. The negative sign indicates that the force
is attractive, that is, toward M . This law is applicable as long as the particles
move at speeds much smaller than the speed of light. For most astrophysical
applications, Newton’s law is sufficiently accurate. The gravitational force is a
central force. This means that its magnitude is a function only of the distance
r, and the direction is along the displacement vector ~r.

m
M

O

F

r

FIGURE 5.1: The point masses, M and m, are located at the origin O and
at the position vector ~r, respectively. The gravitational force ~F on m due to
M points toward the origin.

It is also convenient to define the concept of a gravitational field. The
gravitational field at any point is equal to the gravitational force on a point
particle of unit mass located at that point. Hence if ~g(~r ) is the gravitational
field at position ~r, then the force on a particle of mass m at that point is

~F = ~gm . (5.2)

81
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The gravitational field of a particle of mass M , at a position ~r, is

~g = −GMr̂

r2
. (5.3)

5.1 Two-Body Problem

Consider the motion of two particles under the influence of their mutual gravi-
tational force. We are interested in predicting their trajectories. This problem
can be solved analytically. Let us first consider the simple case where one of
the masses is very heavy. In that case we can assume that the heavy mass
is at rest and focus on the motion of the light particle. This is applicable,
for example, for the Sun-Earth and the Earth-Moon systems. Let us denote
the light mass by m and the heavy mass by M . We choose the origin at the
position of the heavy particle (see Figure 5.1). The gravitational force on m
points toward O. Hence the torque acting on m, with respect to the origin,
is zero and its angular momentum remains constant with time. The angular
momentum, ~L, of m is ~L = m~r×~v, where ~v is its velocity. Because ~L remains
fixed and is perpendicular to ~r, ~r must lie in a plane. This means that the
trajectory of m lies in a plane. We take this to be the x−y plane. The precise
nature of the trajectory depends on the total mechanical energy, E, of m. We
can express E as

E = K + U =
1

2
mv2 + U , (5.4)

where K is the kinetic energy of m, v = |~v| its speed, and U its potential
energy. It is given by

U = −α
r
, (5.5)

where α = GMm. It is convenient to use plane polar coordinates (r, θ) to
analyze the motion of m. The velocity vector in these coordinates is given by

~v = ṙr̂ + rθ̇θ̂ , (5.6)

and hence the kinetic energy K is

K =
1

2
mṙ2 +

1

2
(rθ̇)2 =

1

2
mṙ2 +

L2

2mr2
, (5.7)

where L = |~L| is the magnitude of the angular momentum vector. The total
energy E and the angular momentum L are constants of motion and have to
be specified as initial conditions.

We now distinguish three different cases:
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1. E > 0: In this case, the mass m is not bound to M . The trajectory
is a hyperbola, as shown in Figure 5.2. In plane polar coordinates, the
solution can be written as

r =
r0

1− ǫ cos θ
, (5.8)

where r0 = L2/(αm) and

ǫ =

√

1 +
2EL2

α2m
> 1 .

The particle comes in from very large distances, approaches the mass
M , and then moves away.

r

Ο

y

x

θ

FIGURE 5.2: The hyperbolic orbit of a particle moving in the gravitational
field of a very heavy particle located at the origin O. Here r and θ are the
plane polar coordinates.

2. E < 0: In this case, the mass m is bound to M . The trajectory is an
ellipse (see Figure 5.3) and satisfies the same equation, Equation 5.8.
In this case, E < 0 and hence 0 ≤ ǫ < 1. The motion of the particle is
periodic with the time period T given by

T 2 =
4π2a3

(M +m)G
≈ 4π2a3

MG
. (5.9)

where a is the semi-major axis of the ellipse. At θ = 0, r = rmax =
r0/(1 − ǫ) is maximum. At θ = π, the particle reaches its minimum
distance, r = rmin = r0/(1 + ǫ) from the origin. After a time interval
T , it returns to rmax. The speed of the particle depends on time. It is
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smallest at r = rmax and largest at r = rmin. The parameter ǫ is equal
to the eccentricity of the ellipse. It can be expressed as

ǫ =
rmax − rmin

rmax + rmin
. (5.10)

For ǫ close to 1, the ellipse is highly elongated. For ǫ = 0, the ellipse
reduces to a circle.

x

y

θ

O

2a

r

FIGURE 5.3: The elliptical orbit of a particle moving in the gravitational
field of a very heavy particle located at the origin O.

3. E = 0: The mass m is barely unbound. The trajectory is a parabola,
with ǫ = 1, r = r0/(1− cos θ). Let ~vE denote the velocity of the particle
at a distance r. This is called the escape velocity because the particle
can escape the gravitation pull ofM if its speed v ≥ vE . Using Equation
5.4, we obtain

vE =

√

2GM

r
. (5.11)

Let us next consider the case of two particles without making the assump-
tion that one of them is very heavy. In this case, both particles move about
their common center of mass. This is illustrated in Figure 5.4. We are in-
terested only in the relative motion of the two particles. Choosing M as the
origin, the two-body problem reduces to a one-body problem with the energy
again given by Equation 5.4, if we replace the mass m in the kinetic energy
by the reduced mass µ, defined as

µ =
Mm

M +m
. (5.12)
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The solution is again given by Equation 5.8, with m in r0 and ǫ replaced by
µ. Hence if the two particles are bound to one another, then mass m would
move along an elliptical trajectory withM at the origin O, as shown in Figure
5.3. Similarly, the mass M will also appear to move in an elliptical orbit, as
seen by an observer at m. For an observer located at the center of mass C,
the position vector of m is given by

~r2 =
m

M +m
~r . (5.13)

Hence m, as well as M , will move in an elliptical orbit with respect to C.

r
2

r
1

C

M m

FIGURE 5.4: Two particles of mass M and m moving under their mutual
gravitational field. Here C denotes their center of mass, and ~r1 and ~r2 the
position vectors of M and m, respectively, with respect to C.

5.2 Application to Solar System

The result obtained in Equation 5.8 can be applied approximately to the solar
system. It describes the trajectory of all the planets fairly accurately. The
corrections to Equation 5.8 arise because the Sun and planets are not point
particles and furthermore the solar system contains more than two objects.
The extended nature of Earth results in additional gravitational effects, such
as tides. Furthermore, precession of the equatorial plane of Earth arises due to
torques generated by its small deviation from spherical symmetry. The effects
of other planets and moons on the motion of a particular planet can be treated
as a small perturbation.

The laws governing the motion of planets in the solar system were first
obtained observationally by Kepler in the early seventeenth century. It was
later shown by Newton that these can be derived by applying the law of
gravitation, Equation 5.1, to the Sun-planet system. Kepler’s laws can be
stated as follows:

1. Each planet moves in an elliptical orbit with the Sun at one of its foci.

2. The line joining the Sun and the planet traces out equal areas in equal
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time intervals. This law follows from the conservation of angular mo-
mentum. Let us assume that mass m moves from point A to B along
an elliptical trajectory, as shown in Figure 5.5, in a small time ∆t. The
angle traversed in this time is ∆θ. The area swept during this time in-
terval is the area of the triangle OAB, given by ∆S = r2∆θ/2. Hence
the rate of change of area is

dS

dt
=

1

2
r2
dθ

dt
. (5.14)

This is constant because L = mr2(dθ/dt) is constant.

3. The time period T of the orbit is proportional to the cube of the semi-
major axis, that is, T 2 = Ca3, with the constant of proportionality C
the same for all planets. From Equation 5.9 we see that this law follows
approximately from the exact equations with C = 4π2/(MG).

x

y

O

A
B

∆θ r

FIGURE 5.5: A particle moving in an elliptical orbit due to gravitational
force of a very heavy particle located at the origin. In a small time interval
∆t, it moves from A to B tracing out an area equal to r2∆θ/2.

5.3 Virial Theorem

Let us consider a system of N particles with masses mi and position vectors
~ri with i = 1, 2..., N . We define the virial of the system as

V =
N
∑

i=1

mi~ri ·
d~ri
dt

. (5.15)
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Taking the time derivative, we obtain

dV

dt
=

N
∑

i=1

mi
d~ri
dt

· d~ri
dt

+
N
∑

i=1

mi~ri ·
d2~ri
dt2

= 2K +
N
∑

i=1

~ri · ~Fi , (5.16)

where ~Fi = mi(d
2~ri/dt

2) is the total force acting on the ith particle and K

is the kinetic energy of the system. Let ~Fij denote the force exerted by the
particle j on i. A particle does not exert any force on itself. Hence let us set
~Fii = 0. We can express the second term on the right-hand side as

N
∑

i=1

~ri · ~Fi =
N
∑

i=1

N
∑

j=1

~ri · ~Fij =
1

2

N
∑

i=1

N
∑

j=1

[

~ri · ~Fij + ~rj · ~Fji

]

,

where the two terms on the right-hand side are equal to one another. They
differ only by the interchange of indices, i ↔ j. This does not produce any
change because these are dummy indices. Using Newton’s third law of motion,
we have, ~Fij = −~Fji. This leads to

N
∑

i=1

~ri · ~Fi =
1

2

N
∑

i=1

N
∑

j=1

(~ri − ~rj) · ~Fij .

Let us now specialize to the gravitational force. In this case,

~Fij = − Gmimj

|~ri − ~rj |3
(~ri − ~rj) (5.17)

for i 6= j. Hence we obtain

N
∑

i=1

~ri · ~Fi = −1

2

N
∑

i=1

N
∑

j=1

Gmimj

|~ri − ~rj |

∣

∣

∣

∣

∣

i6=j

. (5.18)

The sum on the right-hand side excludes terms corresponding to i = j. The
potential energy, Uij , of a pair of particles corresponding to index i and j is
given by

Uij = −Gmimj

|~ri − ~rj |
. (5.19)

Hence the right-hand side of Equation 5.18 is the sum of potential energies
of all pairs of particles. Note that each pair is counted twice. Hence the sum,
including the factor of 1/2, is simply the total potential energy of the system.
Substituting in Equation 5.16, we obtain

dV

dt
= 2K + U . (5.20)

We next take the average of Equation 5.20 over a long time period T . The
time average of a variable X, 〈X〉, is defined as

〈X〉 = 1

T

∫ T

0

dtX . (5.21)
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The time average of Equation 5.20 leads to

1

T
[V (T )− V (0)] = 2〈K〉+ 〈U〉 . (5.22)

Let us now assume that we are dealing with a periodic system or a system
in equilibrium. In either case, V (T ) ≈ V (0) and, hence, for large time T , the
term on the left-hand side of this equation is approximately zero. Hence we
obtain

2〈K〉+ 〈U〉 = 0 . (5.23)

This is called the virial theorem.
An important application of this theorem arises when analyzing the evo-

lution of large gravitationally bound systems, such as clouds of gas and dust
in spiral galaxies whose collapse leads to the formation of stars. These clouds
normally maintain equilibrium, in which case 2〈K〉+ 〈U〉 ≈ 0. At some stage
they might start collapsing due to some perturbation, such as a supernova ex-
plosion in the vicinity. The cloud starts collapsing and the virial theorem is no
longer applicable. In this case, 2〈K〉 < −〈U〉. Eventually the heat generated
due to collapse leads to an increase in 〈K〉 and again maintains equilibrium.

5.4 Tidal Forces and Roche Limit

In Section 5.1 we discussed the motion of two point particles under their mu-
tual gravitational attraction. The situation is more complicated if we consider
extended objects. In this case the gravitational force is different at different
points on the object. Hence it can distort the shape of the object or in some
cases can tear it apart. These force differentials are responsible for the tides
observed on Earth and hence are called tidal forces.

M r

B
A

m

R

O

a

FIGURE 5.6: A uniform spherical object of massm in the gravitational field
of another object of mass M . The radius of object of mass m is R. Different
segments on m, such as the two point masses located at A and B, experience
tidal forces. The arrow indicates the direction of the acceleration vector, ~a, of
the center of mass of object m.

Let us consider the tidal force on a uniform sphere of mass m and radius
R that is located at a distance r from a uniform sphere of mass M . Consider



Gravitation and Kepler’s Laws 89

a point mass µ located at position A, as shown in Figure 5.6. The difference
in magnitude of the gravitational field, Equation 5.3, ofM between A and the
center O is equal to

∆g =
GM

(r −R)2
− GM

r2
≈ 2GMR

r3
+ ... , (5.24)

where we have expanded the denominator (r−R)2 in powers of R/r and kept
only the leading order term. The direction of the vector ∆~g is towardM . Hence
a particle at position A will have a tendency to get pulled away from m due to
this force. Similarly, as an exercise, you may show that a particle at B will also
get pulled away from m with a force of the same magnitude. The direction of
∆~g at a few representative points on m is shown in Figure 5.7. We find that at
C and D, ∆~g points toward the center O. Hence points at different locations
will have a tendency to be pulled apart in different directions, as shown in
Figure 5.7. The magnitude of ∆~g also depends on position.

OA B

C

D

FIGURE 5.7: The direction of the tidal force at different points on a uniform
spherical object of mass m moving in the gravitational field of a very heavy
objectM , shown in Figure 5.6. (Adapted from D. Kleppner and R. Kolenkow,
An Introduction to Mechanics.)

The variation of ∆~g with position explains the phenomenon of tides ob-
served on Earth. This is caused by the effect of the Moon and the Sun. For
simplicity let us consider only the Sun, represented by massM in the example
discussed above. Earth is represented by mass m. Consider a small element of
water, of mass µ, near the surface on an ocean. Let us first ignore the the effect
of the variation of the Sun’s gravitational field on Earth. In this approxima-
tion, all points on Earth accelerate toward the Sun at the same rate. Hence
the pressure due to the ocean balances the gravitational pull of Earth on µ
and is not affected by the Sun’s gravitational field. Due to the variation in the
Sun’s gravitational field, however, the ocean pressure depends on position at
the surface of the Earth, causing the water to rise at some point and fall at
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another. This leads to tides. In our discussion, for simplicity, we have ignored
the contribution due to rotation of the Earth.

Let us now assume that the mass m is moving directly towardM . At some
distance, the tidal forces would become so large that they might completely
disrupt the object m. Its gravitational attraction may no longer be enough
to hold itself together. The minimum distance m can approach M before
breaking apart is called the Roche limit. Here we compute this distance by
assuming that m is moving directly towardM and not rotating about its axis.
We will consider a point mass µ located at A and estimate the distance rmin

at which it begins to fly off the surface of m. For simplicity, we also assume
that M is very heavy and can be taken to be at rest. All points on m undergo
acceleration equal to ~a, which is equal to the acceleration of the center of
mass. By Newton’s law we obtain

a =
GM

r2
, (5.25)

where r is the distance between the centers of the two masses. The direction of
the acceleration is directly towardM as indicated in Figure 5.6. The equation
of motion of µ can be written as

GMµ

(r −R)2
+ F = µ a ,

where F represents the force exerted by mass m on µ. This includes the
gravitational pull of m as well as the force exerted by the medium, such as
normal reaction. Using Equation 5.25, we obtain

F = GMµ
2R

r3
+ ... . (5.26)

In the limiting case when the particle is just about to fly off from the surface
of m, F is equal to the gravitational attraction of m. At this point the normal
reaction from the surface of m becomes equal to zero. Hence we obtain

Gmµ

R2
= GMµ

2R

r3
,

which gives

r3 = 2R3M

m
.

This is the minimum value of r for which the mass µ will not fly off the surface
of m. Let ρ and ρM be the densities of m and M , respectively. Let the radius
of M be RM . Hence we find

rmin =

(

2ρM
ρ

)1/3

RM . (5.27)

If r < rmin, then the mass m will begin to break apart if gravitational force
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is the only attractive force that holds it together. This limiting value of r
is called the Roche limit. One can also perform a similar calculation for an
object m in circular orbit around M . The simplest case is that of an object
(m) that rotates about its own axis at precisely the same angular speed as it
revolves around M . In this case all points on m revolve around M with the
same angular speed at a fixed distance from its center. You can analyze this
system as an exercise.

In the case of objects composed of fluids, the situation is more complicated.
As the object approaches another heavy object, its surface starts to distort
even before it reaches the Roche limit. We will discuss some aspects of this
distortion in Chapter 13. A detailed calculation of the Roche limit for such
objects, taking their distortion into account, gives the result

rmin = 2.44

(

ρM
ρ

)1/3

RM . (5.28)

Exercises

5.1 Use Kepler’s third law to determine the time period of revolution of the
Earth around the Sun.

5.2 Verify the virial theorem for the case of periodic motion of two particles
gravitationally bound to one another.

5.3 Verify Equation 5.24 for the difference in gravitational field at A com-
pared to O, for mass m shown in Figure 5.6. Repeat this calculation
for points B, C, and D on mass m. The points C and D are shown in
Figure 5.7. Show that for B the magnitude of ∆~g is the same as at A.
The magnitudes at C and D are half in comparison to that at A. The
directions at all these points are shown in Figure 5.7.

5.4 Determine the Roche limit for a mass m revolving about the mass M
in a circular orbit. Assume that m also rotates about its axis at the
same rate as it revolves about M . In this case, all points on m move in
a circular orbit around the center of M with the same angular speed.
Assume a point particle placed at position A (Figure 5.6) that is bound
to m only by its gravitational attraction. Find the minimum distance of
m from M for which this particle will not leave the surface of m.

Ans : rmin =

(

3ρM
ρ

)1/3

RM
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6.1 Introduction

The Universe contains a huge number of stars. Our galaxy has in excess of 200
billion stars, and there are billions of galaxies in the Universe. The density
of stars is very high near the center of the Milky Way and decreases as we
go outward along the galactic disk. In Figure 6.1 we show a Hubble telescope
picture of the Sagittarius Star Cloud, located near the center of the Milky
Way. We observe a very high density of stars with varying luminosities and
colors. We also observe huge clusters of stars, called globular clusters, in the
galactic halo. One example is shown in Figure 6.2. The properties of stars
show wide variation in luminosity, size, mass, and spectrum. It is of course
not possible to directly measure all these attributes. For most of the stars, we
are only able to observe their flux density at different frequencies. Hence we
know their apparent magnitudes corresponding to different filters, such as R,
B, V, U, etc. Furthermore, their spectral lines can be measured very accurately.
For some binary systems, the masses and radii of stars can also be directly
measured. We point out that all stars, other than the Sun, appear as point-
like objects. It is not possible to directly measure their angular diameters.
For some stars the angular diameter measurement has been made either by
interferometry or using occultations. Using flux and spectral measurements,
it is possible to deduce other properties, such as their mass, radius, chemical
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composition, surface temperature, etc. In this and the next few chapters we
study how this is accomplished.

FIGURE 6.1: The rich distribution of stars in the Sagittarius Star Cloud,
near the galactic center. Most of this region is not visible due to the high
density of dust. This picture was taken in the direction that is relatively
transparent. (Image courtesy of NASA.)

The stellar radiation approximately follows the blackbody distribution.
Superimposed on this continuum radiation we observe absorption lines and
in some cases emission lines. The observed solar flux density as a function
of wavelength, at the top of the atmosphere, is shown in Figure 6.3. It is
approximately described by a blackbody distribution corresponding to T =
5, 778K. Superimposed on the blackbody continuum we see a large number of
dips, which are absorption lines produced in stellar atmospheres. These can
be seen more clearly in Figure 6.4, where we show the spectrum in a narrow
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range of frequencies. Historically, the physics of stars became clear only after
these spectral lines were properly interpreted.

FIGURE 6.2: The globular cluster, M80. Globular clusters are found in the
Milky Way halo and typically contain about 100,000 stars. (Image courtesy
of NASA.)
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FIGURE 6.3: The solar spectrum (solid curve) as seen at the top of the
atmosphere. The specific flux density, in units of W/(m2 · nm), is plotted as
a function of the wavelength in nanometers. The plot shows continuum radi-
ation along with a large number of absorption lines. The smooth dashed line
represents a blackbody spectrum corresponding to a temperature of 5,778K.
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FIGURE 6.4: A sample of the solar spectra, showing absorption lines in a
narrow range of frequencies. The elements that lead to these lines are also
indicated. This image was taken by UVES in the Laboratory in Garching on
October 19, 1998. (Image courtesy of European Southern Observatory (ESO).)

6.2 Stellar Spectra

The stellar spectral lines are produced in the atmospheres of stars. The so-
lar spectrum was first observed by Fraunhofer in 1814. He observed a large
number of absorption lines in the Sun’s spectrum. At that time the quan-
tum theory of atoms had not been developed. Hence Fraunhofer did not know
how these lines originated. He later found that the different stars show dif-
ferent spectra. The first photograph of stellar spectra was obtained by Henry
Draper. He photographed the spectral lines in star Vega in 1872. He also pho-
tographed the spectrum of many more stars. The first comprehensive survey
and classification of stars, based on their spectral lines, was done at Harvard
by E. C. Pickering and his two assistants, W. P. Fleming and A. J. Cannon.
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The classification scheme was finalized in its present form by Cannon in 1901
and is called the Harvard classification scheme. Cannon classified the spectra
of about 225,000 stars. The results were published in the form of the Henry
Draper catalog between the years 1918 and 1924. The classification was done
on the basis of the strength of a few representative spectral lines at visible
frequencies. These include the Hydrogen Balmer lines, and lines of other el-
ements such as He, Ca, Fe, as well as molecules such as TiO. However, at
that time the astronomers were not able to properly interpret the observed
spectrum. The underlying reason for the difference in spectral lines among
different stars was not clear. The strength of the spectral lines could depend
on many factors, such as the chemical composition and physical conditions at
the stellar surface.
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FIGURE 6.5: The energy levels and different spectral lines of the hydrogen
atom. The discrete energy levels which have E < 0 correspond to a bound
state. The continuum represents an infinite number of continuous energy levels
and correspond to a free electron.

The spectra originates when an atom or an ion makes transitions among
different quantum states. The different quantum states of the hydrogen atom
are shown in Figure 6.5. The lowest or ground state has energy equal to −13.6
eV. An electron in the ground state can absorb an incident photon and jump
to one of the excited states. Similarly, a photon in one of the excited states
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can absorb a photon and jump to states of higher energy. All these transitions
lead to an absorption line spectrum. The energy, E, of the photon absorbed
is given by E = E2 − E1, where E1 and E2 are the two states participating
in the transition. This transition leads to an absorption line at frequency ν,
given by

hν = E2 − E1 , (6.1)

where we have used Equation 2.5. Similarly, an electron in an excited state
can make a transition to a lower energy state by emitting a photon. This
produces an emission line spectrum. In the case of hydrogen, the Balmer lines
lie at visible frequencies and hence play a special role in astronomy.

The energy levels are discrete only for E < 0 which corresponds to an
electron bound to a Hydrogen atom. For E > 0 the electron becomes free. It
is no longer bound to the Hydrogen atom. In this case there is no restriction
on its energy which can take any value. Hence we have an infinite number of
continuous energy levels labeled as continuum in Figure 6.5.

It was only after the development of the quantum theory that it was pos-
sible to correctly interpret the origin of stellar spectra. One could then de-
termine the physical properties of stars, such as the temperature, pressure,
density, as well as the relative abundance of different elements. The stellar
spectra, however, is very complicated and hence this task is rather difficult.
The spectra differ for different elements and also depend on their stage of ion-
ization. The proper framework for their interpretation is quantum statistical
mechanics. The basic equations that are required are the Boltzmann distribu-
tion and the Saha ionization equation. The Boltzmann distribution forms the
basis of statistical mechanics. The Saha ionization equation was developed in
1920 and allows one to compute the relative abundance of atoms in different
stages of ionization. Using this equation, astrophysicists were able to establish
that the Harvard classification is primarily a temperature sequence. The next
important step was taken by Cecilia Payne, a doctoral student at Harvard,
who performed a detailed analysis of stellar spectra in order to deduce the
physical and chemical properties of stars using the Saha equation. An impor-
tant outcome of her analysis was that the most common elements in stellar
atmospheres are hydrogen and helium. At the time it was generally assumed
that the relative abundance of elements in stars is similar to that on Earth.
On Earth, helium is very rare. Moreover, elements such as oxygen, silicon,
iron, calcium were found to be more abundant than hydrogen in the Earth’s
crust. Hence this was a very surprising discovery at the time.

We will indicate the state of ionization of the different atoms by a roman
numeral. For example, HeI denotes the helium atom and HeII denotes the
singly ionized helium atom. Similarly OIII denotes the doubly ionized oxygen
ion. Each of these atoms or ions can be in any state of excitation.
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6.3 Harvard Classification of Stellar Spectra

In the Harvard classification, the stellar spectra are classified into the following
categories

O B A F G K M,

which may be remembered easily by the mnemonic, “Oh Be A Fine Guy/Girl,
Kiss Me.” Each of these classes is divided into subclasses by adding a numeral
ranging from 0 to 9 in front of each of the letters. Hence the spectral type A is
subdivided into A0, A1, ..., A9. The stars are classified based on the strength
of the different spectral lines at visible wavelengths. For example, in the case
of the hydrogen atom, only the Balmer series, which corresponds to transitions
from n = 2 state to higher n states (see Figure 6.5), lies in the visible part of
the spectrum. Hence the spectral lines of hydrogen would contribute only if
the hydrogen atom has a significant probability of being in the second excited
state.

The physical basis for the classification was unclear at the time it was
completed. Only later, with the development of the Saha ionization equation,
did it become clear that the Harvard sequence, O B A F G K M , corresponds
to decreasing temperature. Hence the O type stars have the highest surface
temperature while the M type stars are the coolest. Furthermore, within a
class, the numeral sequence 0 to 9 represents decreasing temperature.

The Harvard sequence was earlier mistakenly associated with the lifetime
of a star. It was based on a model where their dominant energy source was
assumed to be the gravitational potential energy rather than the nuclear fusion
reactions. The O type stars were believed to be in the early stage of star
formation, which then cool off and later evolve into M type stars. Hence the
O, B stars are referred to as the early types and the K, M stars as the late
types. This model is now discredited but the late type, early type nomenclature
is still used sometimes.

The O type stars are very hot and bluish in color. Their surface tempera-
ture ranges from 40,000K to 20,000K. Due to the high temperature, they show
strong absorption lines from different ions such as HeII, CIII, NIII, OIII, SiIV,
and SiV, as well as from the neutral helium atom HeI. A few emission lines
can also be seen. The HI Balmer lines are visible but weak. An example of
an O type star that can be seen by the naked eye is Meissa, which lies in the
constellation Orion.

The B type stars are also very hot, with surface temperature ranging from
20,000K to 10,000K. They are also blue in color. Their spectra show neutral
helium lines, which are strongest at B2. One also sees lines from ions such as
OII, SiII, and MgII. The HI Balmer lines are relatively strong. A naked eye
example of a B type star is Rigel, which is the brightest star in constellation
Orion.

The A type stars are white in color and have surface temperature ranging
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from 10,000K to 7,500K. These have very strong hydrogen HI lines. One also
sees lines of ions such as MgII and SiII. The CaII lines are also seen, but are
weak. A naked eye example is Sirius, the brightest star in the night sky, in
the constellation Canis Major.

The F type stars have surface temperatures in the range 7,500K to 6,000K
and have a yellow-white color. The HI lines are getting weaker but still rela-
tively strong. CaII and FeII lines start getting stronger. Neutral metal lines
(FeI and CaI) also become visible. An example is Canopus in the constellation
Carina. It is the second brightest star in the night sky.

The G type stars are yellow stars with surface temperatures roughly in
the range 6,000K to 4,500K. Here the HI lines are weak. CaII lines continue
to become stronger. FeII lines are strong. The strength of FeI and CaI lines
increases from G0 to G9. The Sun is a G2 type star. Another example is Alpha
Centauri A in the constellation Centaurus.

The K type stars are orange stars with surface temperatures in the range
4,500K to 3,600K. The HI lines are now very weak. The spectrum is dominated
by metal absorption lines. CaII lines are very strong. The neutral metal lines
FeI and SiI are visible. The molecular bands of TiO become visible by K5.
An example is Aldebaran in the constellation Taurus.

The M type stars are cool red stars with surface temperatures less than
3,600K. Here the spectra are dominated by TiO bands and neutral metal (FeI)
lines. The HI lines are absent. CaI lines are also very strong. An example is
Betelgeuse in the constellation Orion.

FIGURE 6.6: The relative strength of the stellar spectral lines of some of
the atoms and ions. (Carroll, Bradley W.; Ostlie, Dale A., An Introduction to
Modern Astrophysics, Ist Edition, 1996. Reprinted by permission of Pearson
Education, Inc., Upper Saddle River, NJ.)
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The strengths of some of the prominent lines as a function of the tempera-
ture are shown in Figure 6.6. The equivalent width, which is a measure of the
strength of a line is shown on the y-axis. The temperature is shown along the
x-axis. The spectral class corresponding to each temperature is also shown.

6.4 Saha Equation

In order to deduce the conditions at the surface of a star from the observed
spectra, we need to determine how the number density of atoms in different
stages of excitation and ionization depends on temperature. Once we have the
theoretical framework that provides this relationship, we can determine the
surface temperature from the observed spectra. The situation is complicated
because the stellar atmosphere consists of many different elements in different
stages of excitation or ionization. If we compare the strengths of calcium
lines to those of hydrogen lines in a G type star, such as the Sun, we find
that they are comparable with one another. Hence a sensible conclusion is
that the relative abundance of calcium in the Sun is comparable with that of
hydrogen. This was exactly what was believed up until about 1920. Then, a
detailed application of Saha equation revealed that the dominant elements in
the Sun and all stars are hydrogen and helium. All other elements constitute,
at most, 2% by mass. In this section we explain how the Saha equation leads
us to this conclusion.

The relative probability of finding atoms in different stages of excitation
is given by the Boltzmann distribution. Let P (Ea) be the probability that the
atom is in the energy state Ea at temperature T . Let ga be the degeneracy of
this state, that is, the number of states with energy Ea. Thus the ratio:

P (Eb)

P (Ea)
=
gbe

−Eb/kT

gae−Ea/kT
. (6.2)

Here k is the Boltzmann constant. This implies that at very low temperatures,
all the atoms are in their ground state. As the temperature increases, some of
the atoms go to their excited states. As the temperature increases further, the
atoms may ionize. During the process of ionization, an atom releases one or
more electrons, which now behave as free particles. This essentially involves a
transition of a bound electron to one of the states in the continuum.

The relative number of atoms in different stages of ionization is given by the
Saha equation. This equation along with the Boltzmann distribution provide
the basic tools to understand stellar spectra. It is derived by assuming that
the ionization process behaves like a chemical reaction. Let XI represent an
atom in the Ith stage of ionization. The ionization process can be represented
as

XI → XI+1 + e− . (6.3)
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Let NI be the number of atoms in the Ith stage of ionization at temperature
T and χI their ionization energy. It is the energy required to barely remove
an electron in the ground state of ionization stage, I, of an atom. The Saha
equation states that

NI+1

NI
= 2

ZI+1

neZI

(

2πmekT

h2

)3/2

e−χI/kT , (6.4)

where ZI is the partition function, ne the number density of free electrons,
me the electron mass, k the Boltzmann constant, and h is Planck’s constant.
The partition function is a weighted sum over the different quantum states of
an atom. It can be expressed as

Z =
∞
∑

a=1

gae
−(Ea−E1)/kT . (6.5)

We will later sketch the derivation of this equation.
We next apply the Saha equation to determine the proportion of hydrogen

atoms in the first excited state to the total number of hydrogen atoms and
ions in a stellar atmosphere. Let’s assume that the atmosphere consists of
pure hydrogen. We are interested in determining the degree of ionization in
such an atmosphere. A hydrogen atom has only one bound electron. Hence
there are only two possible stages of ionization, the hydrogen atom and free
proton, which we denote by HI and HII, respectively. The pressure of the
free electron gas, Pe, in stellar atmospheres is typically 200 dynes/cm2. We
can express the free electron number density, ne, in terms of Pe by assuming
that electrons behave like an ideal gas. By using the ideal gas equation of
state, we obtain

Pe = nekT . (6.6)

We next evaluate the partition functions in stage I and II. For the hydro-
gen atom,

ZI = g1 +

∞
∑

a=2

gae
−(Ea−E1)/kT .

At typical stellar surface temperatures, the terms corresponding to a ≥ 2
are negligible. The degeneracy, g1, of the ground state of hydrogen atom is
2. Hence ZI ≈ g1 = 2. The partition function ZII is clearly equal to unity
because in this stage of ionization there are no bound electrons. Hence only
one configuration is possible. The ionization energy in this case is equal to the
binding energy of the hydrogen atom in the ground state, that is, 13.6 eV.
Substituting all these into the Saha equation, we find

NII

NI
=
kT

Pe

(

2πmekT

h2

)3/2

e−13.6/kT . (6.7)

Here NII and NI represent the number densities of hydrogen ions and neutral
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hydrogen atoms, respectively. In Figure 6.7 we show the ratio NII/(NI +
NII) as a function of temperature. We find that at a temperature of about
5,000K, the number of ions is negligible. Ionization increases rapidly above a
temperature of 8,000K. By a temperature of about 10,000K, almost all the
atoms are ionized. The important point is that ionization occurs very rapidly,
over a relatively short temperature interval.

NII /(NII + N I )

Temperature (K)

N2 / (N  + N   )21

/ N total2N
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FIGURE 6.7: The ratio NII/(NII +NI) (small dashed line) and N2/(N1 +
N2) (dashed line) for hydrogen. Here NI and NII represent the number of
hydrogen atoms in the atomic and ionized state, respectively. The number of
hydrogen atoms in the ground and first excited states are represented by N1

and N2, respectively. The solid line shows the ratio N2/Ntotal, where Ntotal =
NI+NII is the total number of hydrogen atoms in the atomic or ionized state.

We next compute the relative number of atoms in the first excited state.
Let the number densities of atoms in the ground state and first excited state be
N1 and N2, respectively. The probability for an atom to be in an excited state
is given by the Boltzmann distribution, taking into account the degeneracy of
the energy level. Hence the ratio of the number of atoms in the first excited
state to those in the ground state is given by

N2

N1
=
P (E2)

P (E1)
=
g2e

−E2/kT

g1e−E1/kT
. (6.8)

For the hydrogen atom, we have gn = 2n2, hence g1 = 2, g2 = 8. The energies
are En = −13.6 eV/n2, which gives E1 = −13.6 eV, E2 = −3.4 eV. We
plot the ratio N2/(N1 + N2) in Figure 6.7 as a function of temperature. We
find that the ratio is significantly different from zero only for temperatures
greater than 10,000K. Comparing with NII/(NI + NII), we see that by this
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temperature most of the atoms are ionized. Hence we find that the number
of atoms in the first excited state compared to the total number of atoms
(including ions) is very small. This happens because for most temperatures,
the ionization probability is much higher in comparison to the probability of
an atom being in an excited state.

In Figure 6.7 we also plot the number of hydrogen atoms in the first excited
state in comparison to the total number of hydrogen atoms and ions. We find
that the relative proportion of atoms in the first excited state is very small over
the entire range of temperature. This plot can be used to interpret the stellar
spectra, in particular to obtain the number density of hydrogen atoms and
ions in the stellar atmosphere. Similar plots can be made for other elements.
Using the observed strength of the spectral lines, these provide the densities
of different elements in stellar atmospheres. The plot, Figure 6.7, holds the
key to understanding why the strength of the hydrogen lines is comparable to
those of many other elements even though the density of hydrogen is much
larger. It shows that only a tiny fraction of hydrogen is in the right state
to produce Balmer lines. Most of it is either in the ground state or ionized.
Hence the effective width of the Balmer lines is very small even if the density
of hydrogen is relatively large.

Let’s consider the case of solar spectra. The surface temperature T =
5, 770K. This implies that most hydrogen atoms are unionized and in their
ground state. Therefore we expect a very small effective width of HI Balmer
lines. Compare this with the lines of singly ionized calcium, CaII. The ion-
ization energy of calcium is 6.11 eV. Hence the probability of ionization at
solar temperature is quite high. Calculations show that practically all calcium
atoms are in the ionized state, CaII. Furthermore, one also finds that most
of the CaII ions are in their ground state. The transition from ground to first
excited state produces the observed spectral lines in the visible region. This
implies that the strength of CaII lines is much higher even if the density of
calcium is much smaller than that of hydrogen.

In the entire range of temperature, the probability of producing HI Balmer
lines in stellar atmospheres is very small. Hence even though the density of
other atoms, such as Mg, Si, Ca, Fe, etc., is small, they produce lines of
comparable or larger effective width in comparison to hydrogen.

The fact that the ionization probability is higher in comparison to the
probability of an electron being in the first excited state seems counterintu-
itive. After all, it requires much more energy to ionize than to go to the first
excited state. Hence the Boltzmann distribution would indicate a higher prob-
ability for the first excited state. However, we must also take into account the
fact that ionization means transition of an electron from a bound state to any
of the continuum levels. There is a continuous infinity of continuum states. In
comparison, the first excited state is a discrete level with a degeneracy of 8.
Hence the probability of ionization is higher because there exist many more
ways in which an atom can ionize.
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6.5 Derivation of the Saha Equation

We next outline the derivation of Saha equation. The derivation is slightly
lengthy but involves several very interesting and important concepts. Hence
I encourage the reader to go through it. We basically need to consider the
ionization reaction,

XI ↔ XI+1 + e− , (6.9)

in equilibrium and determine the number densities of different species, that
is, the ions XI , XI+1 and the electron e−. Each of these particles is in a free
state at temperature T . The number densities of particles depend on their
distribution functions, which depend on the spins of the particles. Broadly,
we split the particles into two categories, fermions and bosons. Fermions are
particles with half integral spin in units of the Planck constant, ~, such as
~/2, 3~/2, etc. Examples of such particles are proton, neutron, and electron,
all of which have spin ~/2. Bosons are particles with integral spin in units of
~, such as 0, ~, 2~, etc. Examples of such particles are the (1) photon, which
has spin ~, and (2) hydrogen atom, which can have spin 0, ~, 2~, depending
on the value of the orbital angular momentum of the electron and the relative
spins of the electron and proton.

Consider a system of particles at temperature T . The number of particles,
dN , in the energy range E to E + dE is given by

dN = dg f(E) , (6.10)

where f(E) is the particle distribution function and dg the statistical weight
or the number of quantum states between energies E and E + dE. The dis-
tribution function, f(E), represents the probability of finding a particle in a
state at energy E. For fermions it takes the form

fFD(E) =
1

exp[−(µ− E)/kT ] + 1
. (6.11)

This is called the Fermi–Dirac distribution. Here µ is the chemical potential. It
is the amount by which the energy of the system changes with the addition of a
particle, keeping the volume and entropy of the system constant. For a system
of many species, each species has its own chemical potential. The characteristic
feature of fermions is that only one such particle can occupy any particular
state. Hence at zero temperature, the particles occupy all states available up
to energy E < µ, and all states beyond this energy remain empty. This is
illustrated in Figure 6.8 where we show fFD for T = 0 and T > 0.
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FIGURE 6.8: The Fermi–Dirac distribution fFD as a function of energy E
(in arbitrary units) for T = 0 and T > 0. At T = 0, the distribution function
is equal to 1 for E < µ and equals 0 for E > µ, where µ is the chemical
potential.

For the case of bosons, in contrast, there is no restriction on the number
of particles in any state. The distribution function takes the form

fBE(E) =
1

exp[−(µ− E)/kT ]− 1
, (6.12)

with E > µ. This is called the Bose–Einstein distribution. In this case, at zero
temperature, all the particles occupy the lowest energy state.

For application to stars, we only need to consider the limit

exp[−(µ− E)/kT ] >> 1 .

In this case, we find
dN = dgeµ/kT e−E/kT . (6.13)

For free particles in the momentum range p to p + dp, the number of states
available is,

dg =
gintV

h3
4πp2dp , (6.14)

where V is the volume in which the particles are confined, p = |~p| the magni-
tude of the particle momenta, and gint the statistical weight of internal states
of the particle. For a massive particle of spin S~, gint = 2S + 1. This formula
does not apply to photons, which are massless. Photons have spin ~. In this
case, gint is equal to 2 corresponding to the two states of polarizations. We
will derive the relationship, Equation 6.14 later. Using Equation 6.13 we find
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that the number of particles per unit volume in the momentum range p to
p+ dp is given by

dn(p) =
dN

V
= gint

4πp2dp

h3
eµ/kT e−E/kT . (6.15)

Let us first compute the number density of electrons. The total energy of
an electron is

Ee = p2/2me +mec
2 , (6.16)

where we have included the rest mass energy,mec
2, because it is useful to keep

track of the ionization energy of the ions, as we will see below. An electron
has spin ~/2 and hence gint = 2. Substituting this in Equation 6.15, we find

dne(p) = 2
4πp2dp

h3
eµe/kT e−p2/2mekT e−mec

2/kT , (6.17)

which is just the Boltzmann distribution for a free electron gas. We now need
to integrate this over p. The result is

ne = 2eµe/kT

(

2πmekT

h2

)3/2

e−mec
2/kT , (6.18)

which can be verified by the reader. This gives the number density of electrons
at temperature T .

We next consider ions in the Ith stage of ionization. Here the situation is a
little complicated because the ions may be in different states of excitation and
we need to consider all possibilities. Let nIj represent the number density of
ions in the jth state of excitation and the Ith state of ionization. Similarly, nI1
represents the ions in the ground state and the Ith stage of ionization. Using
the Boltzmann distribution, we find

nIj
nI1

=
gIj
gI1

e−(EIj−EI1)/kT . (6.19)

Here EIj represents the energy of the ion in the jth state of excitation. The
total number density of ions is

nI =
∞
∑

j=1

nIj =
nI1
gI1

ZI(T ) , (6.20)

where ZI is the partition function defined earlier. Here all contributions from
the excited states are grouped inside the partition function. Now we only need
to compute nI1. We denote the mass and total energy of an ion, XI , in the
ground state by the symbols mI and EI , respectively. The energy is given by

EI =
p2

2mI
+mIc

2 , (6.21)
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where, as in the case of electrons, we have included the rest mass energy.
Similarly, for the ion, XI+1, we obtain

EI+1 =
p2

2mI+1
+mI+1c

2 . (6.22)

Substituting this into the exponent of Equation 6.15, we find, after integrating
over momentum p,

nI = ZI(T )e
µI/kT

(

2πmIkT

h2

)3/2

e−mIc
2/kT . (6.23)

Similarly, we obtain

nI+1 = ZI+1(T )e
µI+1/kT

(

2πmI+1kT

h2

)3/2

e−mI+1c
2/kT . (6.24)

In equilibrium, we have
µI = µI+1 + µe . (6.25)

Furthermore,

mI = mI+1 +me −
χI

c2
, (6.26)

where χI is the ionization energy, as defined earlier. We, therefore, find that
the ratio

nI+1

nI
= e−µe/kT

ZI+1(T )

ZI(T )
e(mI−mI+1)c

2/kT . (6.27)

In obtaining this equation, we have used the approximation, mI ≈ mI+1, in
the coefficient but not in the exponent. We can eliminate e−µe/kT in Equation
6.27 using Equation 6.18. This finally gives us the Saha equation.

6.5.1 Number of States of a Free Particle in a Box

We next derive the relationship Equation 6.14. Here we need to determine the
number of quantum mechanical states available to a particle in the momentum
interval p to p + dp, where p = |~p| is the magnitude of the momentum. The
particle is assumed to be confined in a cubical box of sides L. Hence in each
direction, the particle is confined to the range −L/2 to L/2. First let’s consider
the simpler case of a particle in just one dimension. The wave function of a
free particle is equal to ψ(x) = N exp(ipxx/~), where N is a normalization
factor. We impose periodic boundary conditions on the wave function,

ψ(L/2) = ψ(−L/2) . (6.28)

This is required so that the total probability that the particle is found inside
the box is unity at all times. This leads to

px
L

2
= −px

L

2
+ 2nxπ~ . (6.29)
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Hence we find nx = pxL/(2π~). Therefore, the number of states in the mo-
mentum interval dpx is given by

dnx =
L

2π~
dpx =

Ldpx
h

. (6.30)

In three dimensions, the total number of states is just dnxdnydnz, which gives

dnxdnydnz =
L3

h3
dpxdpydpz .

Here L3 = V is equal to the volume of space in which the particle is confined.
We are interested in the number of states in the momentum interval p to
p + dp. Hence we should integrate over the angles in momentum space. We
use dpxdpydpz = d3p = p2dp sin θdθdφ. We integrate over the range 0 ≤ θ ≤ π
and 0 ≤ φ < 2π to obtain

dg =
V

h3
pdp

∫

sin θdθdφ =
V

h3
4πp2dp . (6.31)

If the particle has gint degrees of freedom, then

dg =
gintV

h3
d3p =

gintV

h3
4πp2dp , (6.32)

which is the desired result.

6.6 HR Diagram

After having accumulated the temperature and absolute magnitude data for
a large number of stars, astronomers tried to find out if there exists any
relationship among these parameters. For example, is it possible that the
luminosities of different stars may be related to some other parameter such as
the temperature, mass, or size of the star? A relationship was found empirically
by making a plot between the absolute visual magnitude MV and the color
index B − V . This plot is now known as the Hertzsprung–Russell or HR
diagram, after its discoverers. We show this plot for a sample of stars in
Figure 6.9.

The color index B − V is directly observable and is a measure of the
effective surface temperature of a star. The absolute visual magnitude is es-
timated from the apparent magnitude after determining the distance of the
star. It provides an estimate of the luminosity L of a star. One can, therefore,
plot the HR diagram in terms of the effective surface temperature and the
luminosity of stars. The corresponding plot is shown in Figure 6.10. The Har-
vard spectroscopic classification is also labeled at the top of this plot. From
left to right, it goes from the very hot O type stars to the cool M type stars.
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FIGURE 6.9: The HR diagram showing the absolute magnitude MV as a
function of the color index B − V . The Sun is located at B − V = 0.656 and
MV = 4.83. The stellar data are taken from the Hipparcos catalog.

We find that most of the stars (80% to 90%) lie roughly on a narrow diag-
onal band on this plot. These are called the main sequence stars. The stars in
the upper left corner along this line are very hot and luminous. As we come
down this line, we find that both the temperature and the luminosity decrease.
Besides the main sequence, we find stars along two horizontal branches in the
upper half plane of the diagram. The stars along the lower branch are called
the red giants. If we compare these to the main sequence stars of comparable
luminosity, we find that these stars have a lower temperature. The stars along
the upper branch are called the red supergiants. These stars are considerably
more luminous compared to the main sequence stars and the red giants of
comparable temperature. Finally we see a branch of stars with very hot tem-
peratures but low luminosity at the bottom of the diagram. These are called
the white dwarfs.

If the star emits as a pure blackbody, then its luminosity is given by

L = 4πσR2T 4 .

Hence, for a given temperature, the more luminous stars have larger radii.
The lines of constant R are also shown in Figure 6.10. We find that these
lines are roughly parallel to the main sequence band. However, there is some
variation in the radius of the stars among the main sequence. The star at the
extreme upper end has a radius of roughly 20 times the solar radius, whereas
the one at the lower right end has a radius of about a tenth of the solar radius.
The giant stars have radii lying roughly between 10 and 100 solar radii. The
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supergiants are larger. For example, the supergiant Betelgeuse, with effective
temperature T = 3, 500K has a radius of about 1,000 times the solar radius.
This means that if it is located at the position of the Sun, then it will extend
up to Jupiter. The density of the giant and supergiant stars is very small.
The Sun has a density of about 1.41 g/cm3, which is roughly the density of
water. The star, Sirius, which is an A1 star, has a density of 0.79 g/cm3. In
comparison, the density of Betelgeuse is 10−8ρSun, which is roughly 10−5ρair.
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FIGURE 6.10: A representation of the HR diagram in terms of effective
surface temperature and luminosity. Lines of constant radius are also shown.

Historically the development of the HR diagram happened at the beginning
of the twentieth century, around the same time as the Harvard classification
scheme. The first diagram was a plot of the observed quantities B− V versus
MV . At that time, the physics of stars and stellar evolution was not properly
understood. One did not know the composition or the surface temperature
of stars. Furthermore, the source of stellar energy was not known. With the
advent of the theory of stellar structure and evolution, it became clear that
different branches of stars in the HR diagram, Figure 6.10, represent different
stages of stellar evolution. In particular, the main sequence phase represents
the earliest stage of evolution, where the energy of a star is provided by fusion
of hydrogen into helium in the core of the star. After exhausting the hydrogen
in its core, the star enters the giant or the supergiant phase, depending on
the mass of the star. A star with a mass larger than roughly 10 solar masses



112 An Introduction to Astronomy and Astrophysics

evolves into a super giant phase, whereas lower mass stars settle into a giant
phase. After the giant phase, a star enters its final phase of evolution, which
may be a white dwarf, a neutron star, or a black hole. These objects are of
very small size in comparison to stars in other phases. A neutron star or a
black hole is too tiny to be represented on a HR diagram. As we discuss later,
a star spends much more time on the main sequence phase in comparison to
the giant phase. Hence most of the stars on the HR diagram are found to lie
on the main sequence. There may be a large number of white dwarfs but most
of them are too dim to be observable. The stellar structure and evolution are
discussed in detail in Chapters 8 and 10.

It is clear from the HR diagram that the Harvard spectral classification,
which is based only on the temperature of a star, is incomplete. For example,
a red giant and a main sequence star have the same temperature but very
different luminosities. One requires a two-dimensional classification that takes
into account this difference. This is accomplished by the Yerkes or MKK clas-
sification scheme, which identifies several different luminosity classes, labeled
by Roman numerals I, II, III, etc. The luminosity classes I, II, III, IV, and V
correspond to supergiants, bright giants, normal giants, sub-giants, and main
sequence stars, respectively. For example, the symbol G2I, represents a super-
giant with the same surface temperature as the Sun. The Sun is classified as
G2V.

6.7 Star Clusters and Associations

We observe a wide range of clusters of stars, from binary systems to globular
clusters, which are huge clusters containing about 105 stars. Large clusters
are very important for studying stellar properties and evolution because all
stars within a cluster are at the same distance from us. Hence the observed
difference in their properties can only be attributed to their intrinsic nature.
Furthermore, as we will discuss later, stars predominantly form in clusters.
Hence, in most cases, all stars within a cluster were formed at the same time.
We next discuss a few prominent types of observed star clusters.

Open clusters are relatively young clusters of stars, which typically contain
anywhere between ten and a few thousand stars and are predominantly found
in the Milky Way disk. The stars within these clusters are relatively far apart
and loosely bound to one another. Hence these clusters appear transparent in
comparison to other clusters. Most of these clusters are dominated by young
stars. This is because, with time, the stars within these clusters drift away
and the cluster breaks up.

Globular clusters are very dense clusters of stars, seen dominantly in the
galactic halo. Hence these form nearly a spherically symmetric distribution
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within the Milky Way. These clusters are very old. In fact, an estimate of
their age gives the best lower limit on the age of the Universe.

An association is a group of stars that may have formed together due
to the collapse of a single cloud but have drifted apart and are no longer
gravitationally bound to one another. Hence stars within an association have
the same age and similar proper motions. An OB association is a cluster of
young stars that is dominated by a few, of the order of 10-100, very hot and
massive O and B stars. It also contains a large number of less massive stars.

6.8 Distance and Age Determination of Clusters Using

Color-Magnitude Diagram

The observed relationship between the absolute magnitudes and color index
of stars allows one to determine their distances. This technique can be used
effectively to determine the distance of star clusters. All the stars in a cluster
are located at the same distance. We can measure their color index, B − V ,
directly by measuring the apparent magnitudes B and V . For example, the
visual magnitude V of the open cluster Hyades as a function of color B − V
is shown in Figure 6.11.

V

B−V

 2

 4

 6

 8

 10

 12

 14

 16

 18
−0.5  0  0.5  1  1.5  2

FIGURE 6.11: The color-magnitude diagram of the Hyades star cluster.
Here the apparent magnitude V is plotted as a function of the color index,
B − V .

Plotting the color and magnitude, V , of the Hyades cluster on the HR
diagram, Figure 6.12, reveals useful information. We clearly identify a set of
stars in this cluster that is on the main sequence. The relationship between the
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apparent and absolute magnitude is given by Equation 4.24. This relationship
has an additional correction due to interstellar extinction, which we discuss
later. We notice that because all stars in a cluster are at the same distance,
the difference between m and M is a constant, equal to −5 log(r/10 pc).
Hence we expect that by adding a constant value to apparent magnitude of
all stars in a cluster, we can get its main sequence branch to align with the
corresponding branch on the HR diagram. The distance r can, therefore, be
determined by matching the cluster data with the main sequence branch on
the HR diagram. This procedure can be used more effectively if we use only
the zero age main sequence stars (ZAMS). The relationship between absolute
magnitude and color is much more precise for such stars. Hence the distance
can be determined with higher accuracy. Such stars can be identified by their
spectral data.
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FIGURE 6.12: The color and visual magnitude V of the Hyades cluster
plotted on the HR diagram, Figure 6.9. The crosses represent stars in the
Hyades cluster. For these stars, the apparent magnitude V is plotted on the
y-axis. The dots represent a general sample of stars whose absolute magnitude
MV is plotted on the y-axis. We can easily identify a sample of stars that lie
almost parallel to the main sequence branch of the HR diagram. By adding a
constant (−3) magnitude from all stars in the cluster, we can make it overlap
with the main sequence. This factor contains information about the distance
of the cluster. We also notice that the stars turn off from the main sequence
toward the giant phase between B − V ≈ 0. This observation can be used to
estimate its age, as explained in text.
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From Figure 6.12 we find that for Hyades

MV ≈ V − 3 . (6.33)

Hence we deduce that
5 log

r

10 pc
≈ 3 . (6.34)

We also deduce from Figure 6.12 that there are no stars in this cluster with
B − V < 0. This suggests that at this point, the stars may have left the main
sequence to approach the giant phase. This information can be used to deduce
the mass of the most massive star that is still on the main sequence. The age
of this star can be determined using the theory of stellar evolution. This yields
an estimate of the age of the cluster. The theory of stellar evolution suggests
that the luminosity L of a main sequence star, L ∝M3.5, whereM is its mass.
This suggests that the lifetime t of a star on the main sequence, t ∝ 1/L2.5/3.5

(see Exercise 6.6). Using this we can express t in terms of the total time tSun

the Sun will spend on the main sequence. We obtain

t = tSun

(

LSun

L

)2.5/3.5

. (6.35)

This gives an estimate of the age of the star that has just left the main sequence
within a cluster. This also provides an estimate of the age of the cluster.

Exercises

6.1 Determine the wavelengths, and hence the colors, of the different Balmer
lines corresponding to the transitions shown in Figure 6.5. The wave-
length range corresponding to different colors can be obtained from the
internet.

6.2 The star Betelgeuse has mass equal to about 8 times the solar mass and
radius about 1,000 times the solar radius. Determine its density and
compare with the density of the Earth’s atmosphere.

6.3 Compute the ratio of the number of atoms in the first excited state,
N2, to the total number of neutral atoms, N1 + N2, at temperatures,
8,000K and 11,000K. Determine also the relative number in the ionized
stage, that is, NII/(NI +NII), at these temperatures. Finally, compute
N2/(NI +NII). Verify that you agree with the result plotted in Figure
6.7.

6.4 Determine the number of quantum mechanical states of a particle in two
dimensions, whose momentum p = |~p| lies in the range p to p+ dp.

6.5 Using Figure 6.12, verify that you agree with the result given in Equation
6.34. Determine the distance to Hyades using this information. Compare
with the best estimate of the distance to Hyades, which is equal to 47 pc.



116 An Introduction to Astronomy and Astrophysics

Furthermore, estimate the age of the cluster using Equation 6.35. The
lifetime of the Sun, tSun, is approximately 1010 years, and the absolute
magnitude of a star with B − V = 0 is approximately 1.

6.6 Derive Equation 6.35 by using the fact that L = E/t, where E is the
total energy emitted by a star, and the relationship L ∝ M3.5. A star
generates energy by nuclear fusion. Hence the total energy emitted is
proportional toM due to the mass energy relationship, E =Mc2, where
c is the speed of light.
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The radiation we observe from an astronomical object displays a rather com-
plex structure. In Figure 6.3 we showed the specific flux of the radiation ob-
served from the Sun at the top of the atmosphere as a function of the wave-
length. We see a large number of sudden dips on a background continuum,
which can be well fitted by a blackbody distribution with a temperature of
5,778K. These sudden drops in flux at different wavelengths represent absorp-
tion lines. Besides the blackbody spectrum, which is produced by a source in
thermal equilibrium, we also find several other forms of continuum spectra.

The radiation from astronomical sources gets further distorted due to prop-
agation through the interstellar or intergalactic medium, the interplanetary
medium, the Earth’s atmosphere, as well as the atmosphere of the source.
The medium leads to frequency-dependent attenuation of radiation. In the
visible spectrum, higher frequencies undergo larger attenuation. Hence the
medium shifts the mean intensity toward smaller frequencies. The medium
also produces absorption lines. In this chapter we study the production and
propagation of radiation from astronomical sources.

We can broadly classify the observed spectra into the following classes:

• Continuous spectra, such as the blackbody radiation

• Discrete (very narrow) absorption and emission spectral lines

• Narrow bands composed of large number of spectral lines

We next describe each of these in detail.

117
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7.1 Continuous Spectra

The blackbody radiation (see Figure 4.5), discussed in detail in Chapter 4, is
an example of continuous emission spectra. In this case, the specific intensity
shows a smooth dependence on frequency. A continuous emission spectrum
is also produced by several other mechanisms besides blackbody. In some
cases we may observe a continuous absorption spectrum. Let us suppose that
radiation with a continuous spectral profile, such as the blackbody, passes
through a medium. Some of this radiation may be absorbed and scattered by
the medium, leading to a distortion in the spectral profile. If this leads to a
continuous dip in the spectrum, the resulting distortion is called a continu-
ous absorption spectrum. We discuss some standard continuous emission and
absorption spectra below.

7.1.1 Synchrotron Radiation

In many astrophysical situations we have charged particles, such as electrons,
moving at very high speeds in background magnetic fields. The magnetic field
exerts force on these particles, causing them to accelerate. A charged parti-
cle always emits radiation when it accelerates. The intensity as well as the
frequency of the emitted radiation depends on the details of the particle mo-
tion, such as its velocity and acceleration. The radiation emitted by charged
particles moving at velocities close to the speed of light in background mag-
netic field is called synchrotron radiation. At such high velocities, the laws
of classical mechanics fail and one has to use the special theory of relativity.
Hence such high velocities are called relativistic. The radiation is emitted pre-
dominantly in the direction of motion of the particle. The power emitted by
particles at such high speeds is very large.

(a) rest frame

z

(b) laboratory frame

FIGURE 7.1: (a) In the rest frame of the electron the photons are emitted
isotropically. (b) In the laboratory frame the electron moving at very high
velocity along the z-axis. The photon velocities in this frame point nearly in
the direction of motion of the electron.
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We next explain why the radiation is emitted predominantly in the forward
direction. Consider an electron moving at very high velocity in the z direction,
as shown in Figure 7.1. Let us first consider emission in the rest frame of the
electron. Since all directions are equivalent, the emitted radiation is isotropic
in this frame (see Figure 7.1). We next transform to the laboratory frame.
This can be done by adding the velocity of the electron to the velocity vectors
of all the photons in the rest frame. The addition has to be done by using
the special theory of relativity. It turns out that the velocities of most of the
photons in this frame point nearly in the direction of motion of the electron.

B

e
_

FIGURE 7.2: An electron moving in a background magnetic field undergoes
a spiraling motion around the magnetic field and emits synchrotron radiation.

In a typical situation, we have a large number of electrons with different
energies spiraling around the magnetic field, as shown in Figure 7.2. The
electrons spiral due to the force exerted by the magnetic field. Let us assume
that in some region, the magnetic field points in the z direction, as shown in
Figure 7.3. Consider an electron that at some instant has velocity vector ~v
perpendicular to the magnetic field, ~B. The force exerted by the magnetic field
on this particle is perpendicular both to ~B and ~v. In the particular situation
shown in Figure 7.3, the force points out of the paper. Hence the particle
picks up a component of velocity that points out of the paper. The important
point is that the force on the particle at every instant is perpendicular to the
velocity vector. In this case the force can change the direction of motion of the
particle but not its speed. The net result is that the particle starts to move
in a circle.

We next consider another electron whose velocity vector makes an angle
θ with respect to ~B, as shown in Figure 7.4. In this case it is convenient to
resolve the velocity vector into two components, parallel and perpendicular
to ~B. The parallel component is not affected by the magnetic force. Hence
the particle moves uniformly in the z direction. However, the perpendicular
component leads to a circular motion in the x-y plane. Hence the electron
moves in a spiral around the z-axis.
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FIGURE 7.3: If an electron has velocity perpendicular to the background
magnetic field, it undergoes circular motion in a plane perpendicular to the
direction of the background magnetic field. Here we assume that the electron
is moving in a region where the magnetic field points in the z direction. The
electron will undergo circular motion in the x− y plane.
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FIGURE 7.4: If an electron has velocity inclined at an angle θ with re-
spect to the background magnetic field, it undergoes spiral motion around the
background magnetic field direction. The electron’s motion can be split into
two parts: (1) motion with uniform speed, v‖, parallel to the direction of the
background magnetic field and (2) circular motion with speed v⊥ in a plane
perpendicular to the background magnetic field. These two motions combined
constitute a spiral motion.

We are interested in the radiation emitted by a huge number of electrons
spiraling around in background magnetic fields. The number density of elec-
trons at a particular energy is described in terms of a distribution function
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N(E). Hence the number of electrons per unit volume that have energies ly-
ing in the range E to E + ∆E is equal to N(E)∆E. In many astrophysical
situations, the distribution function can be expressed as

N(E) ∝ 1/Eβ , (7.1)

where β is a constant. This is usually an approximation, valid only over a
limited range of energies. Such a distribution law is called nonthermal. In
contrast, a thermal distribution describes the energy distribution of a gas of
particles in thermal equilibrium. In order to obtain the synchrotron power
emitted by a system of electrons, we need to statistically sum the contribu-
tions over all the electrons. We skip the details here. Assuming a distribution
function of the form given in Equation 7.1, we obtain the following spectral
distribution of the emitted power as a function of the frequency ν,

f(ν) ∝ 1/να . (7.2)

In many cases, the exponent α is found to be approximately constant over a
wide range of frequencies.

7.1.2 Bremsstrahlung

This is the radiation emitted by a free electron moving inside a plasma. A
plasma is a medium consisting of free electrons and ions. A free electron mov-
ing in empty space cannot by itself emit a photon because this process violates
conservation of energy and momentum. However, inside a medium, the elec-
tron can emit a photon by scattering from an ion. This is shown schematically
in Figure 7.5(a). The term Bremsstrahlung is German for “braking radiation”.
The electron loses energy in the process and slows down. A free electron can
have any energy, in contrast to a bound electron that can only have discrete
energy levels. This implies that there is no restriction on the energy of the
emitted photon. As in the case of synchrotron radiation, we need to sum over
the contributions from a large number of electrons. In this case also, the power
emitted shows a continuous dependence on frequency.
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(a) (b)

FIGURE 7.5: An illustration of (a) emission of a photon due to
Bremsstrahlung and (b) absorption due to inverse Bremsstrahlung or free-
free absorption. The electron scatters from an ion and absorbs or emits a
photon.

In Figure 7.5(b), we show a related process called inverse Bremsstrahlung
or free-free absorption. In this case, the electron absorbs radiation while scat-
tering off from an ion. This process is applicable when we have radiation
incident on some region containing plasma. The radiation gets partially ab-
sorbed and leads to distortion in its spectral distribution. It essentially leads
to a reduced incident power. The amount of reduction also depends on fre-
quency. This distortion of the spectral distribution of incident radiation is
called absorption spectra.

−e

FIGURE 7.6: An illustration of the scattering of a free photon from a free
electron. This process is called Compton scattering.

7.1.3 Compton Scattering

This is the radiation produced by the scattering of free photons with free
electrons, as shown schematically in Figure 7.6. Here a free photon scatters on
a free electron. No net photon is produced in this process. The frequency and
direction of propagation of the scattered photon is different from that of the
incident photon. In this case also, the scattered photons display a continuous
spectrum because there is no restriction on the energy of the incident or the
final photon. At low frequencies, hν << mec

2, this process is called Thomson
scattering, discussed in more detail in the next chapter.
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7.1.4 Bound-Free Transitions

A free electron in a plasma can sometimes be absorbed by an ion. The electron
gets bound to the ion and occupies one of the discrete energy levels available
to it inside the ion. A simple example is the capture of a free electron by
a proton to form a hydrogen atom. Another example is the capture of an
electron by a doubly ionized helium ion to produce a singly ionized helium
ion. In this process, the electron loses energy in the form of an emitted photon.
The energy of the photon is equal to the difference in the energy of free and
bound electron, as shown in Figure 7.7. Because the incident electron is free,
the photon produced can take a continuous range of energies. Hence this
mechanism produces a continuous emission spectrum.

An atom or an ion can also absorb a photon incident upon itself. In this
process, a bound electron gains energy and moves to a higher energy level, as
shown in Figure 7.8. If the incident photon has sufficient energy, the electron
may become free. The frequency of the photon must satisfy the relationship
hν > χ, where χ is the ionization energy of the atom or the ion. This process
is called photo-ionization or bound-free transition. It produces a continuous
absorption spectrum.

Photon
Continuum

free electron

Discrete
energy
levels

FIGURE 7.7: Continuum emission due to an electronic transition from a
free state to a bound state.
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FIGURE 7.8: Continuum absorption due to an electronic transition from a
bound state to a free state.

7.2 Absorption and Emission Line Spectrum

(a)

(b)

absorption

emission

FIGURE 7.9: (a) The absorption line spectrum is generated when an atom
absorbs incident continuum radiation and makes a transition to a higher ex-
cited state. (b) The emission line spectrum is produced when an atom makes
a transition to a lower energy state.

We next discuss the formation and properties of discrete line spectra. In this
case, the spectral profile shows sharp dips at some definite frequencies, as
seen, for example, in the solar spectrum, Figure 6.3. The dips represent ab-
sorption lines. Most stars predominantly show an absorption line spectrum.
These spectral lines are generated by atomic transitions. An absorption line
is generated when an atom absorbs radiation from an incident continuous
spectrum and makes a transition to a higher energy level as shown in Figure
7.9. An emission line spectrum is also visible in some cases. In this case, one
observes a sharp peak instead of a dip. The emission line is generated when
the atom in a higher excited state makes a transition to a lower energy state.
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Each atom has a distinctive spectrum that depends on its energy levels. The
frequency of the radiation emitted or absorbed is related to the level spacing
by Equation 6.1. The spectrum also depends on physical conditions such as
the temperature and pressure of the medium. The temperature, in particu-
lar, very strongly influences the spectrum because it determines which energy
levels are occupied and also the stage of ionization of the atom. The resulting
spectra of a star, which is composed of many different elements, in different
stages of ionization, is very complex.

F

F

(a) emission line

(b) absorption line

v

v

v

v

FIGURE 7.10: The flux density Fν as a function of frequency ν for (a) an
emission line and (b) an absorption line along with the background continuum
radiation.

An emission and an absorption line along with the background continuum
radiation is schematically shown in Figure 7.10. Here we have focused on just
one line in the background continuous spectrum. The characteristics of the line
are better represented in Figure 7.11 where we plot the observed flux density
F (ν) divided by the background continuum radiation flux B(ν). In making



126 An Introduction to Astronomy and Astrophysics

this plot, we need to know the form of the background continuum. In some
cases, we may know this function theoretically. Alternatively, we can obtain it
by making an empirical fit to the data. As we see from Figure 7.11, the line has
a finite width, which is often much smaller than the central frequency of the
line. Later we will describe the physical processes that lead to a finite width
of the spectral lines. We first mathematically characterize the line profile.

The normalized flux density, that is, the flux density, F (ν), divided by the
background continuum, B(ν), can be expressed as

F (ν)

B(ν)
= 1± f(ν) , (7.3)

where the positive sign refers to the emission line and the negative sign to an
absorption line. The function f(ν) characterizes the actual shape of the line.
It is significantly different from zero only in a narrow range of frequencies.
In Figure 7.11 we plot F (ν)/B(ν) for an absorption line, corresponding to a
negative sign in Equation 7.3. Notice that F (ν)/B(ν) approaches unity as we
move away from the spectral line. In Figure 7.12 we plot the line profile, f(ν),
as defined in Equation 7.3.

νν
0

Γ
νF  /Bν

W

1

FIGURE 7.11: The flux density divided by the continuum flux Fν/Bν for
an absorption line. The peak frequency of the line is ν0 and its width Γ. The
equivalent width W is also shown.

The shape of a spectral line is well characterized in terms of two parame-
ters:

(1) The equivalent width W : This provides information about the overall
strength of the line, as shown in Figure 7.11. It is equal to the area under
the spectral line, that is, the area of the shaded region in Figure 7.12.
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This area has dimensions of frequency because f(ν) is dimensionless.
Hence we define an equivalent widthW that is numerically equal to this
area, as shown in Figure 7.11.

(2) The width at half maximum, Γ: This is the width of a spectral line at
half its peak value. This parameter gives us an estimate of how narrow,
or broad, the line is.
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FIGURE 7.12: The spectral line profile f(ν) as a function of the frequency
ν. The width of the line at half maximum, Γ (Gamma), is also shown.

Theoretically, the shape of a spectral line, ignoring the continuum, is well
represented in most cases by

f(ν) =WL(ν) , (7.4)

where the equivalent widthW parameterizes the strength of the line and L(ν)
is the Lorentzian function, defined as

L(ν) =
1

π

(Γ/2)

(ν − ν0)2 + (Γ/2)2
. (7.5)



128 An Introduction to Astronomy and Astrophysics

Here the parameter Γ characterizes the width of the line and ν0 its peak
position. Mathematically, the equivalent width is defined as

W =

∫ ∞

0

f(ν)dν . (7.6)

The integral of the Lorentzian function, L(ν), over the range −∞ < ν <∞, is
equal to one. In our case, ν ≥ 0. In the limit of very small width, the integral
in the range 0 ≤ ν < ∞ is also unity, to a very good approximation. Hence
if we substitute f(ν) = WL(ν) on the right-hand side of Equation 7.6, the
integral is approximately equal to W .

A sample spectral line profile f(ν) is shown in Figure 7.12. In this figure
we have chosen the parameters ν0 = 1, W = π/25, and Γ = 0.1, in arbitrary
or unspecified units. The flux density f(ν) at its peak position ν = ν0 is equal
to 2W/(πΓ). This is equal to 0.8 in Figure 7.12. The intensity reaches half
its peak value at frequencies (ν0 ± Γ/2). Hence Γ is the width of the line at
half its maximum value, as shown in Figure 7.12. We point out that the width
Γ is typically very small in comparison to the peak frequency ν0 of the line.
Indeed, the formula for the line profile, Equation 7.4, is applicable only in the
limit Γ << ν0.

For an absorption line, the minimum value of the spectral profile F (ν) can
be zero if the medium is such that the entire continuum radiation is absorbed
at the central frequency ν0. If the value of F (ν) at ν0 is greater than zero,
then we call the medium optically thin, else it is optically thick. In the latter
case, the medium is highly opaque and the radiation is completely attenuated
near the central frequency.

7.2.1 Radial Velocity Due to Doppler Effect

As discussed in Chapter 3, the observed wavelength of radiation becomes
smaller (blue shifted) if the source is moving toward the observer. It becomes
larger (red shifted) if the source is moving away. This effect can be used to
measure the velocity component of the source along the line of sight. Let
us assume that the observed wavelength of a spectral line received from a
distant source is λ. We do not have any direct means to estimate the emitted
wavelength, λ0, and hence we cannot determine the Doppler shift, ∆λ = λ−λ0
directly. However, we can deduce λ0 by matching it with a known spectral
line of some element. We can then estimate ∆λ from the observed λ and
use Equation 3.9 to extract vr. This measurement is best done by observing
several different spectral lines. Let us assume that we observe different lines at
wavelengths λ1, λ2, λ3, ..., etc. We match each of these with known spectral
lines, λ01, λ02, λ03, ..., respectively. We can then deduce the Doppler shifts
∆λ1, ∆λ2, ∆λ3, ..., etc. and extract the corresponding velocities by using
Equation 3.9. For consistency, the values of vr extracted from different spectral
lines should match one another within experimental errors. If this is found to
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be true, we can attribute the observed shift to Doppler effect and make a
reliable measurement of vr.

7.2.2 Causes of Finite Width of Spectral Lines

We next discuss different mechanisms that lead to a finite width of the spectral
lines. A transition between two discrete energy levels will produce a spectral
line at a particular frequency, which corresponds precisely to the energy dif-
ference between the two levels. However, the observed spectral lines display a
finite width. This broadening of spectral lines arises due to several reasons.

1. Natural Broadening: The energy states of any atom have small widths.
The width is related to the lifetime of the state by the Heisenberg un-
certainty relationship

∆E ≈ ~/∆t . (7.7)

If a state has absolutely well-defined energy, then ∆E = 0 and ∆t = ∞.
Such a state necessarily has infinite lifetime. However, most states have
a finite lifetime that leads to a small uncertainty in their energy.

2. Doppler Broadening: The atoms in stellar atmospheres are always in
random motion. Due to the velocity of the atoms, the lines produced get
Doppler shifted. The observed line profile arises due to a large number
of atoms in random motion. Because each atom produces a line at a
slightly different position compared to other atoms, the observed line
profile appears broadened.

3. Pressure Broadening: The energy levels of atoms and ions get slightly
shifted due to interaction with other particles in the medium. This leads
to a shift in the spectral lines. The shift depends on the medium prop-
erties and changes randomly with position. Hence this also leads to
broadening of the observed spectral lines.

7.3 Molecular Band Spectra

The atoms produce isolated spectral lines due to electronic transitions be-
tween different energy levels. A molecule has additional degrees of freedom as
compared to an atom. The different atoms inside a molecule can vibrate about
their mean positions, as shown schematically in Figure 7.13(a). A molecule
can also undergo rotation, as shown in Figure 7.13(b). These lead to addi-
tional states besides the different electronic states. The transitions among
these states, including the electronic transitions, produce narrow bands con-
sisting of a large number of lines. These are called the molecular band spectra.



130 An Introduction to Astronomy and Astrophysics

(a) (b)vibrations rotations

FIGURE 7.13: An illustration of (a) vibrational and (b) rotational modes
of a molecule.
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FIGURE 7.14: An illustration of the energy levels of a molecule. We show
two electronic states, each of which further split into several vibrational and
rotational states. Here we show four vibrational states for each electronic level.
This are labeled as 1, 2, 3, and 4. The closely spaced narrower lines indicate
the rotational states.

An illustration of the energy levels of a molecule is shown in Figure 7.14.
Here we show only two electronic states. The molecule can undergo vibrations
and rotations in each electronic state. Hence each such state has additional
closely spaced states corresponding to these modes. These are indicated by
the two sets of states in Figure 7.14. Typically the level splittings between vi-
brational states is much smaller than those between different electronic states.
Transitions between different vibrational modes typically produce bands in in-
frared frequencies. The rotational states have even smaller energy splittings.
The corresponding transitions produce bands in microwave frequencies. One
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can also have transitions from the vibrational or rotational states of one elec-
tronic state to those of another electronic state. These can produce bands in
infrared, visible, or ultraviolet frequencies.

7.4 Extinction

The light or radiation that reaches us from an astronomical source undergoes
considerable attenuation during propagation due to scattering and absorption.
Due to scattering, the incident radiation is scattered by the medium in all
directions. This effectively reduces the intensity of the beam reaching the
observer. In the case of absorption, radiation is absorbed by the medium
and then re-emitted in different directions and at different frequencies, again
effectively reducing the intensity of the beam. The combined loss is called
extinction.

Incident beam

FIGURE 7.15: A schematic illustration of the incident beam and target
particles, denoted by small spherical objects. An incident particle mostly en-
counters empty space and occasionally scatters from a target particle.

We next mathematically describe the attenuation of radiation due to ex-
tinction. In most situations considered in astrophysics, the medium has very
low density. The intensity of the incident beam is also normally very small. It
is convenient to use the photon, that is, particle, interpretation of light. We
imagine light as a beam of photons with flux N . The flux N is defined as the
number of photons crossing a unit cross-sectional area per unit time. The flux
is proportional to the intensity of light,

N ∝ I .

The photons interact with the particles in the medium, which we refer to
as the target particles, and are scattered and absorbed. For simplicity, let’s
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assume that the target particles are at rest. Let their number density, that is,
the number of particles per unit volume, be denoted by n. We are interested
in the change in flux ∆N as the beam travels a small distance ∆s in the
medium.

∆ s

A

FIGURE 7.16: The incident beam of cross-sectional area A traversing a
distance ∆s in medium.

We can visualize extinction by considering a parallel beam of photons
propagating in a medium, as shown in Figure 7.15. We have assumed that
the medium is rare and the photon beam flux is relatively low. Hence as a
photon propagates through the medium, it mostly encounters empty space,
and the probability of getting scattered is small. Some of the photons get
scattered or absorbed after colliding with the particles in the medium. Each
beam particle interacts with the target particle independent of other beam
or target particles. Hence the change in flux is proportional to the incident
flux, the target density, and the distance traveled ∆s. This can be expressed
mathematically by the equation

∆N = −σNn(∆s) , (7.8)

where the proportionality constant σ is called the cross section and has dimen-
sions of area. The dimensions of σ can be easily determined by noticing that
∆N has the same dimensions as N , and n∆s has dimensions of inverse area.
The negative sign in this equation means that the flux is decreasing. Hence
the change in flux, ∆N , is negative. We physically interpret σ as the cross-
sectional area over which the incident particle scatters or gets absorbed by a
target. We can visualize this by imagining target particles as small spheres of
cross-sectional area σ as shown in Figure 7.15. If the incident particle strikes
within this area, then it gets scattered or absorbed, or else it propagates
through unaffected.

We now derive the equation for ∆N , Equation 7.8, more directly. Let a
photon beam of cross-sectional area A traverse a distance ∆s in the target,
as shown in Figure 7.16. The total number of target particles in volume A∆s
is equal to nA∆s (number density times the volume). Each target particle
presents an effective cross-sectional area σ over which the incident particle
undergoes scattering and/or absorption. Multiplying this by the number of
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target particles, we find the total area over which an incident particle can in-
teract with a target particle, within a distance ∆s, is equal to σnA∆s. Because
there are N incident particles per unit area per unit time, the total number
of particles scattered and/or absorbed per unit time in area A is σNnA∆s.
Hence the rate per unit area at which the particles are being removed from the
incident beam is σNn∆s, which gives us the final result, Equation 7.8. This
relation is valid as long as the scattering and absorption of a photon with a
target particle occurs independently of other target particles or photons. This
assumption may be violated in the case of high target density and/or high
incident flux. In this case, Equation 7.8 would be more complicated and the
linear dependence on N and/or n may no longer be valid.

As a simple example, consider a particle of negligible size, such as a marble,
incident on a spherical object, such as a billiard ball, of radius r, as shown in
Figure 7.17. Let the impact parameter be equal to b. The impact parameter is
defined as follows: Draw a perpendicular from the center of the target particle
to the line along the direction of velocity of the incident particle, as shown in
Figure 7.17. The length of this perpendicular line is the impact parameter. It
is clear that the marble will undergo scattering if b < r. Otherwise it will not
scatter. Therefore, the cross-sectional area for scattering, σ, is equal to πr2.

r

v

incident particle
target

b

FIGURE 7.17: The incident particle, of negligible dimensions, approaches
the target with velocity v and impact parameter b. The target is assumed to
be a sphere of radius r.

If we consider the scattering of a photon on an electron, then the cross
section does not refer to the physical size of these particles. To the best of
our knowledge, both the electron and photon are point particles. However,
the photon scatters on an electron due to their electromagnetic interaction
through the process called Compton scattering. In this case, the cross section
is equal to the effective area over which scattering occurs. Some of the photons
may also be absorbed by the target particles. The probability for this process
is mathematically described by absorption cross section, which is equal to
the cross-sectional area over which the incident particles are absorbed by the
target particles.

The cross-sectional area over which the incident photon scatters or is ab-
sorbed by a target is usually very small. A convenient unit of cross section is
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the barn,
1 barn = 10−24 cm2 . (7.9)

In the above derivation, we have used the photon interpretation of the
electromagnetic field because it is convenient. Going back to the wave inter-
pretation, we note that the intensity of the wave I is directly proportional to
N . Hence in terms of intensity, we obtain

∆I = −nσI∆s , (7.10)

where I represents the intensity of light and ∆I the change in intensity after
propagation through a distance ∆s. The equation can also be expressed in
terms of the specific intensity, Iλ, by replacing I and ∆I by Iλ and ∆Iλ,
respectively. It is convenient to define the absorption coefficient or opacity κλ,
such that

ρκλ = nσλ , (7.11)

where σλ is the cross section at wavelength λ and ρ is the density of the
medium. In terms of κλ, the extinction equation for specific intensity can be
expressed as

∆Iλ = −ρκλIλ∆s . (7.12)

The basic difference here from Equation 7.10 is that the density ρ appears
in this equation instead of the number density n. Furthermore, this equation
gives us the change in intensity ∆Iλ at a particular wavelength λ. The opacity
κλ in Equation 7.12 is a measure of how strongly the incident beam intensity
attenuates in a medium. Finally we define the optical thickness τλ such that

∆τλ = ρκλ∆s . (7.13)

In the limit of infinitesimally small distance, ∆s→ ds, Equation 7.12 can
be written as, dIλ = −ρκλds. Hence we obtain the differential equation

dIλ
ds

= −ρκλIλ . (7.14)

The solution to this equation can be expressed as

Iλ(s) = Iλ(0) exp

(

−
∫ s

0

κλρds

)

= Iλ(0) exp(−τλ) , (7.15)

where τλ is the total optical thickness of the medium of length s. This de-
scribes the decrease in intensity of radiation due to absorption and scattering
during propagation in a medium. As discussed in Chapter 4, in astronomy we
are interested in the intensity observed through a particular filter. Hence in
astronomical applications, we need to add up the contributions to Equation
7.15 due to all wavelengths corresponding to the filter.

We point out that besides being attenuated, the radiation intensity may
also increase during propagation in a medium. This is due to emission from
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the medium. Furthermore, radiation emitted by stars, other than the source
under observation, may be scattered in the direction of the observer as shown
in Figure 7.18. Taking this increase into account, we can express the net change
in specific intensity as

dIλ
ds

= −ρκλIλ + jλ , (7.16)

where jλ is called the emission coefficient of the medium. The second term on
the right-hand side leads to an increase in intensity due to emission and scat-
tering in the direction of propagation. Equation 7.16 is the general equation
of radiative transfer in a medium.

S’

medium

scattered light

OS

FIGURE 7.18: The radiation emitted by the source S is attenuated as it
propagates in a medium toward the observer O. However, the radiation inten-
sity also is enhanced due to scattering of radiation from other sources such as
S′ in the direction of O.

7.4.1 Extinction Coefficient

We next obtain a formula for the distance modulus by taking the effect of
extinction into account. Consider a star of radius R. Let Fλ0 be the flux
density at the surface of a star at wavelength λ and Fλ(r) the corresponding
flux density at a distance r > R from the center of the star. Because the flux
density decreases as 1/r2 with distance in free space, we find that

Fλ(r) = Fλ0
R2

r2
e−τλ , (7.17)

This equation must be applied to the flux observed through a particular filter.
Using the formulae for apparent and absolute magnitudes, we find that the
distance modulus at wavelength λ,

m−M = −2.5 log10
Fλ(r)

Fλ(10)
= −2.5 log10

(

10 pc

r

)2

− 2.5 log e−τλ .
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This gives

m−M = 5 log
r

10 pc
+A , (7.18)

where the extinction coefficient,

A = (2.5 log10 e)τλ , (7.19)

gives the change in the apparent magnitude due to extinction. Here τλ is
the optical thickness of the medium between the surface of the star and the
observer. We can represent it in the form of an integral as

τλ =

∫ r

R

dr′κλρ .

In the formula for distance modulus, the flux density Fλ(10) is computed by
assuming that the medium is free space. Hence in this case, we set τλ = 0 in
using Equation 7.17 to compute Fλ(10).

We can now express the result given in Equation 7.18 for different filters
used in astronomy. These are obtained by summing over the contributions
from different wavelengths, corresponding to a particular filter. For the filters
V and B, for example, we obtain

V =MV + 5 log
r

10 pc
+AV , (7.20)

B =MB + 5 log
r

10 pc
+AB , (7.21)

respectively, where AV and AB are the corresponding extinction coefficients.
The visual extinction AV of the Milky Way is approximately 1.8 magnitude
for a propagation distance of 1 Kpc.

7.4.2 Color Excess

Besides extinction, the interstellar medium also causes the reddening of light.
This is because blue light is scattered and absorbed more than red light. In
general, the attenuation is larger at smaller wavelengths, leading to a shift
in the spectrum of stars toward higher wavelengths. Due to this frequency
dependence, the color index B − V increases. By subtracting Equation 7.20
from Equation 7.21, we obtain

B − V =MB −MV + EB−V . (7.22)

Here the difference MB −MV is a measure of the intrinsic or true color of the
star, and the color excess

EB−V = AB −AV (7.23)
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arises due to extinction in the interstellar medium. It has been observed that,
on average, for stars, the ratio

R =
AV

AB −AV
≈ 3.0 . (7.24)

It is found to be almost the same for all stars. This gives a measure of the
reddening caused by the interstellar medium.

In Figure 7.19 we show a plot of the true colors of the main sequence
stars. The color index U − B is plotted as a function of B − V after sub-
tracting out the color excess. The corresponding curve for a true blackbody
is also shown. We find that the color-color plot shows some deviation from
blackbody behavior. This is partially attributed to extinction caused by the
stellar atmospheres, which also leads to reddening. In Figure 7.19 the point
S represents the observed color indices of a particular star. This point does
not lie on the solid curve due to the effect of the interstellar medium. The
arrow indicates the approximate position of this star on the solid line after
correcting for the effect of interstellar extinction.

B−V

U
−

B Blackbody

B0

A0
F0 G0
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FIGURE 7.19: The color index U−B as a function of B−V (solid curve) for
the main sequence stars. The plot shows the true color of stars after subtract-
ing out the effect of interstellar medium. The Harvard classification of stars
is also indicated. The (dashed line) shows the corresponding result for a true
blackbody. The observed color indices of a star show reddening in comparison
to the solid curve, as indicated by the point S. One has to apply a correction
due to color excess in order to deduce the true color of the star. (Data from
C. W. Allen, Astrophysical Quantities and H. Arp, Astrophysical Journal 133,
874 (1961).)



138 An Introduction to Astronomy and Astrophysics

Exercises

7.1 Determine the cross section for scattering of a billiard ball from another
billiard ball. Both have a radius equal to R.

7.2 Assume that a galaxy is moving away from us at a speed of 300 Km/s.
Determine the observed Doppler shift of a spectral line with frequency
ν0 = 5× 1014 Hz produced by this galaxy.

7.3 Consider an atomic state that has a lifetime of 1 second. Determine the
width, ∆E, of this state. A transition from this state produces a spectral
line at visible frequency ν0 = 5× 1014 Hz. Determine the width of this
line caused by natural broadening. Compare this with ν0.

7.4 Show that the solution to the differential equation Equation 7.14 is given
by Equation 7.15.

7.5 The visual extinction coefficient AV for a star at 1 Kpc is approximately
1.8 magnitude. Determine its blue extinction coefficient AB .

7.6 The absolute magnitude MV of a star is known to be −3.0. Its apparent
visual magnitude V is observed to be 12.

(a) Determine its distance by ignoring AV .

(b) If we include AV , the distance cannot be computed directly. We can
obtain a rough estimate as follows: Compute AV for r = 1, 2, 3, 4
Kpc. Insert these values in Equation 7.20 and compute the dis-
tances. The value that is closest to the input distance provides a
rough approximation of the true distance. This procedure can now
be refined by computing AV values over intervals of 100 pc and
inserting in Equation 7.20. Notice that (a) provides a very poor
approximation of the distance.
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The internal structure of stars cannot be probed by direct observations. We
observe only the radiation emitted by the surface, which allows us to deduce
the surface properties. The internal structure must be deduced indirectly by
theoretical modeling. Stars are essentially gaseous structures held together by
gravitational force. The outward force exerted by the gas pressure balances
the inward gravitational pull to maintain equilibrium. The outward pressure
is maintained by the heat generated by nuclear reactions in the core of a star.

To a good approximation, a star maintains mechanical and thermal equi-
librium for most of its lifetime. The energy generated in its core does not
accumulate inside the star. It slowly finds its way to the surface, where it is
released in the form of blackbody radiation. Depending on the size of the star,
the emission from the surface peaks at infrared, visible, or ultraviolet frequen-
cies. The internal as well as surface properties of a star evolve very slowly.
The evolution is not noticeable within the span of a human lifetime. The fact
that a star evolves and emits radiation implies that it cannot be in strict me-
chanical and thermal equilibrium. However, the deviations are expected to be
small.

After taking birth, a star goes through several different stages of evolu-
tion. It spends a maximum amount of time in the main sequence phase of
its life cycle. This is the phase during which its energy is generated by fusion
of hydrogen nuclei into helium. A star does undergo rapid changes when it
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exhausts its nuclear fuel. For example, the main sequence phase of a star ter-
minates when the hydrogen in the core is completely converted to helium. The
temperature in the core is not sufficiently high at this stage to start Helium
fusion. In that case, the internal pressure is not sufficient to balance the grav-
itational attraction and the star tends to collapse. This initiates a sequence of
events which happen rather quickly till the temperature in the core becomes
sufficiently high to start nuclear fusion of the heavier elements present in the
core. The physical characteristics of the star change dramatically during this
process. In some cases, when it exhausts a heavier nuclear fuel such as Helium,
Carbon or Oxygen, the entire star may be blown apart in a supernova explo-
sion. The luminosity of the star rises by many orders of magnitude within a
very short time scale of a few days. The only remnant left behind may be a
tiny compact object called neutron star.

We next obtain the basic equations that determine the structure of stars.
We shall mostly be interested in stars under equilibrium conditions. We shall
assume spherical symmetry which is a very good assumption for stars. Hence
the physical and chemical properties of stars depend only on the distance, r,
from the center and not on the angular coordinates θ and φ. The basic variables
describing the stellar structure are the pressure, P (r), temperature, T (r),
density, ρ(r), the energy produced within a radius r, L(r) and the relative
abundance of different elements. It turns out to be useful to define another
variable,M(r), which is equal to the mass contained within a sphere of radius
r. We need equations which describe the rate of change of these variables with
r.

8.1 Pressure Gradient

The basic forces that govern the dynamics of a star are

1. Gravitational attraction, which tends to collapse the star

2. The outward pressure exerted by the stellar medium

A star is in mechanical equilibrium if these two forces balance one another;
otherwise the star collapses or expands. Consider an infinitesimal test element
of mass ∆m at a distance r from the center. Let its cross-sectional area be A
and its thickness ∆r, as shown in Figure 8.1. We also assume that as the star
expands or contracts, the test mass does not mix with the remaining stellar
medium. Hence it can be treated as an isolated system and we can apply
Newton’s law, F = ma, to this element. The mass has only radial acceleration
whose magnitude is equal to a = d2r/dt2. Under equilibrium, this acceleration
is equal to zero. The gravitational force acting on it is FG. The magnitude of
the force due to pressure, P (r), is given by, FP (r) = P (r)A. The force due
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to pressure acting radially on the surface at r is equal to FP (r) (see Figure
8.2). The corresponding force at r+∆r is −FP (r+∆r). The negative sign in
this force arises it acts radially inward. The equation of motion can now be
written as

(∆m)a = FG − FP (r +∆r) + FP (r) . (8.1)

∆m

R

r

A

FIGURE 8.1: An infinitesimal mass element, ∆m at distance r from the
center of a star of radius R. The element has surface area A and thickness ∆r.

(r+   r)∆

(r+   r)∆

−F

F
P

(r)

P

r

FIGURE 8.2: The force due to pressure acting on a mass element ∆m of
thickness ∆r shown in Figure 8.1. The area of both the surfaces, located at r
and r +∆r, is equal to A.

The force due to pressure is given by,

−FP (r +∆r) + FP (r) = −AP (r +∆r) +AP (r) = −A∆P (r) , (8.2)
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where ∆P = P (r +∆r) − P (r) is the difference in pressure between the two
surfaces. The gravitational force can be expressed as

FG = −GM(r)∆m

r2
, (8.3)

where M(r) is the total mass contained within a sphere of radius r, as shown
in Figure 8.3. Therefore we can express the equation of motion as

(∆m)a = −GM(r)∆m

r2
−A∆P . (8.4)

The infinitesimal mass, ∆m, is given by

∆m = ρA∆r . (8.5)

Substituting for ∆m in the equation of motion, dividing by ∆r, and taking
the limit ∆r → 0, ∆P → 0, we obtain

ρa = −GM(r)ρ

r2
− dP

dr
, (8.6)

Under equilibrium, the acceleration is zero. Hence we obtain

dP (r)

dr
= −GM(r)ρ

r2
= −ρg(r) , (8.7)

where we have defined the acceleration due to gravity g(r) = GM(r)/r2. This
equation gives us the rate of change of pressure as a function of r under equi-
librium conditions. We notice that dP/dr is negative. This implies that at
equilibrium, the pressure decreases with an increase in r. This is reasonable
because the pressure at any point essentially balances the gravitational force
acting on the column of gas on top. As we move to larger values of r, the
column height gets smaller and the gas becomes less dense. Hence the grav-
itational force acting on it becomes smaller, resulting in a smaller pressure
required to counter-balance it.

r

M(r)

FIGURE 8.3: The variable, M(r), is defined as the mass of the segment of
radius r of a star.
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8.2 Mass Distribution

We next obtain a differential equation for the massM(r) contained within the
radius r (Figure 8.3). The infinitesimal mass contained within radius r and
r +∆r is given by

∆M(r) = 4πr2ρ∆r . (8.8)

Taking the limit, ∆r → 0 and ∆M(r) → 0, we obtain

dM(r)

dr
= 4πr2ρ . (8.9)

This equation gives us the rate at which M(r), the mass contained within a
sphere of radius r, changes with r.

8.3 Energy Production

A star produces energy predominantly in its core due to nuclear fusion reac-
tions. At steady state, the total luminosity of the star is equal to the rate of
energy production. Let L(r) be the total energy produced by the star within
a sphere of radius r per unit time. At steady state, this is the luminosity or
the rate at which energy flows outward from this sphere. We define the energy
production coefficient, ǫ(r), to be the amount of energy released per unit time
per unit mass. We can express the infinitesimal energy ∆L(r) released within
the radius r to r +∆r as

∆L(r) = ǫ(r)∆M(r) . (8.10)

Substituting for ∆M(r), dividing by ∆r, and taking the limit, ∆r → 0, we
obtain

dL(r)

dr
= 4πr2ρǫ(r) . (8.11)

The total luminosity of a star is simply equal to L(R), where R is the radius
of the star. As we discuss later, the predominant source of energy in a star is
nuclear fusion reactions. A detailed understanding of these reactions is neces-
sary to compute the energy production coefficient ǫ. We address this subject
in the next chapter.
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8.4 Temperature Gradient

A star has a very high temperature in its core. The temperature drops as we
go toward the surface. The energy produced in the core is transported to the
surface either through radiative or convective transport. Radiative transport
means that energy is transported directly by the propagation of electromag-
netic radiation. For example, the energy from the Sun is transported to Earth
by this mechanism. Inside stars, radiative transport dominates in regions of
very high temperature, such as inside their cores. In the case of convective
transport, energy is transported due to the motion of parcels of hot gas. For
example, the gas near a flame gets heated and rises, leading to a convective
transport of energy. In stellar interiors, this mechanism dominates in regions
of lower temperature closer to the surface. The phenomenon of conductive
transport, which plays a dominant role inside solids, does not contribute in
the case of stars.

We next obtain a differential equation for dT/dr under equilibrium condi-
tions, considering radiative and convective transport separately.

8.4.1 Radiative Transport

s

r

P θ

FIGURE 8.4: Radiation field at the point P . We consider radiation prop-
agating in the direction s which makes an angle θ with respect to the radial
direction.

Here we give a simplified treatment of radiative transport. Let’s consider ra-
diation at the point P propagating at an angle θ to the radial direction, as
shown in Figure 8.4. The path taken by radiation is labeled by the symbol s.
The rate at which the specific intensity Iλ changes is given by Equation 7.16.
We are interested in applying this to the stellar interior where, to a good ap-
proximation, κλ and ρ depend only on the distance r from the center. Hence
we obtain

dIλ(r, θ)

ds
= −κλ(r)ρ(r)Iλ(r, θ) + jλ(r, θ) . (8.12)
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Here λ is the wavelength, κλ the absorption coefficient, ρ the density of the
medium, and jλ the emission coefficient of the medium. The specific intensity
Iλ and emission coefficient jλ also depend on the angle θ. The angular depen-
dence of jλ arises due to induced emission and is proportional to Iλ. A detailed
discussion of this point is beyond the scope of the present book. Interested
readers can refer to Principles of Stellar Evolution and Nucleosynthesis by
D. D. Clayton. Here we simply note that due to this proportionality, we can
absorb the θ-dependent part of jλ in the term κλρIλ with a redefinition of
κλ. We denote the resulting absorption coefficient by the symbol κ′λ and the
isotropic part of jλ by j′λ. Hence j′λ depends only on r. The resulting equation
can be expressed as

dIλ(r, θ)

ds
= −κ′λ(r)ρ(r)Iλ(r, θ) + j′λ(r) . (8.13)

At any point, the star is locally in thermal equilibrium at temperature
T (r). Hence, to a good approximation, the specific intensity Iλ(r, θ) is equal to
the blackbody intensity, Bλ(r), corresponding to temperature T (r). However,
a star is not in exact thermal equilibrium. There is a net outward flux of
radiation and hence Iλ(r, θ) deviates from the blackbody distribution. This
deviation is important in the present derivation. In terms of r, we can express
Equation 8.13 as

cos θ
1

κ′λ(r)

∂Iλ(r, θ)

∂r
= −ρ(r)Iλ(r, θ) +

j′λ(r)

κ′λ(r)
. (8.14)

Here we have used ∂r/∂s = cos θ and divided throughout by κ′λ. Further-
more, on the left-hand side of this equation, we have used the approximation
Iλ(r, θ) ≈ Bλ(r), the blackbody intensity, and ignored the θ dependence of
Iλ(r, θ). We next integrate this equation over λ and set

I =

∫ ∞

0

dλIλ , (8.15)

1

κ̄(r)

∫ ∞

0

dλ
dIλ
dr

=

∫ ∞

0

dλ
1

κ′λ(r)

dIλ
dr

, (8.16)

J(r) =

∫ ∞

0

dλ (j′λ(r)/κ
′
λ(r)) . (8.17)

The mean κ̄(r) is called the Rosseland mean opacity. We also have

∫ ∞

0

dλ
dIλ
dr

=
d

dr

∫ ∞

0

dλ Iλ =
dI

dr
. (8.18)

This gives us
cos θ

κ̄(r)

dI

dr
= −ρI + J(r) . (8.19)

We emphasize that we are neglecting the θ dependence of I on the left-hand
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side of this equation. We next multiply this equation by cos θ and integrate
over the entire solid angle, to obtain

1

κ̄(r)

∫

dΩcos2 θ
dI

dr
= −ρ

∫

dΩcos θ I +

∫

dΩcos θ J , (8.20)

where dΩ = sin θdθdφ. Because J depends only on r, we find that

∫

dΩcos θ J = 0 . (8.21)

In the limit of exact blackbody, I = B, where B is the blackbody intensity
corresponding to the temperature at radial distance r. In that case, even the
first term on the right-hand side of Equation 8.20 would vanish. However, this
term is non-zero because the intensity is not exactly isotropic at any point
and leads to an outward flux of radiation. We, therefore, set

∫

dΩcos θ I = F (r) , (8.22)

where F (r) is the flux density at radius r. The flux density is related to the
total radiation flux or luminosity L(r) at radius r by

F (r) =
L(r)

4πr2
. (8.23)

We caution the reader that F (r) 6= σT 4(r). However, at the surface, the
radiative flux F (R) = σT 4(R). On the left-hand side of Equation 8.20, the
dominant contribution is obtained by setting I = B(r), where B(r) is the
blackbody intensity at temperature T (r). Setting B(r) = σT 4(r)/π and taking
its derivative, we find

16σ

3κ̄
T 3 dT

dr
= −ρF (r) . (8.24)

We set the Stefan-Boltzmann constant σ = ca/4, where a is the radiation
constant and express F (r) in terms of L(r) to obtain

dT (r)

dr
= − 3κ̄ρL

16πr2caT 3
. (8.25)

This gives the equation for the temperature gradient in regions where radiative
transport dominates.

8.4.2 Convective Transport

We next obtain the equation of the temperature gradient assuming that con-
vection provides the dominant contribution. Consider a small parcel of gas
inside the stellar medium, as shown in Figure 8.5. If its temperature T ′ is
higher than the ambient temperature T , then it will have a lower density. The
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surrounding gas exerts a force on it in the outward direction. Hence the gas
parcel will tend to rise. If it is cooler, then it will tend to fall. This process of
the rise and fall of the gas parcel can be considered adiabatic, to a very good
approximation. This means that during this process, the gas parcel does not
exchange heat with the surrounding medium. This is due to the fact that the
time scale over which it exchanges heat with the surroundings is much larger
than that of the rise and fall of the parcel. Let P ′ and T ′ be the pressure
and temperature of the gas inside the parcel. As the parcel rises or falls, the
change in pressure and temperature follows the standard adiabatic gas law,

P ′1−γT ′γ = constant , (8.26)

where γ = CP /CV is the gas constant. Here CV and CP are, respectively, the
specific heat capacities at constant volume and pressure.

r

T
T’

FIGURE 8.5: A small parcel of gas at distance r from the center. The
temperature inside the parcel is denoted by T ′. The ambient temperature is
T (r).

Let’s assume that initially the parcel has the same temperature as the
surroundings. Due to a small perturbation, it starts to rise. As the parcel
rises, its temperature decreases according to the adiabatic law, Equation 8.26.
Note that the pressure and density inside a star decreases with increase in r.
If the temperature of the parcel falls with r at a rate less than that of the
surroundings, that is, if
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, (8.27)

then it will be unstable and continue to rise. This is because in this case, it
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will continue to encounter cooler environment as it rises. In contrast, if its
temperature falls at a rate faster than the surroundings, that is, if
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, (8.28)

then it will be stable and will start oscillating about its mean position. In
this case, convection cannot occur. If convection dominates energy transport,
then the gas will be thoroughly mixed due to its rise and fall. In this case,
in equilibrium, the ambient temperature gradient would be the same as the
adiabatic temperature gradient. This can be understood as follows: If the
temperature gradient is smaller than this, then convection cannot occur, in
contrast to our assumption that it dominates the energy transport. If the
temperature gradient is higher than this, then gas will rise and fall until it
becomes equal to the adiabatic gradient.

Using the adiabatic law, the temperature of the gas can be expressed as

T = CP 1−1/γ ,

where C is a constant. By differentiating with respect to P and eliminating
C, we find

dT

dr
=

(

1− 1

γ

)

T

P

dP

dr
, (8.29)

which is the required equation for the temperature gradient. It is valid when
convection dominates energy transport.

8.5 Boundary Conditions

In order to obtain a unique solution to the stellar differential equations derived
in this chapter, we need to specify suitable boundary conditions. These are
given as follows:

At r = R, where R is the radius of the star,

M(R) =M0 , (8.30)

whereM0 is the total mass of the star. Furthermore, it is convenient to set the
temperature and pressure at the surface equal to zero, that is, T (R) = 0 and
P (R) = 0. This is not entirely true for real stars where this value is small but
non-zero. However, this small value is not expected to make a major difference
in the final results.

At r = 0, one sets the boundary conditions M(0) = 0 and L(0) = 0. This
is equivalent to the assumption that there is no hard core at the center of the
star. The mass varies smoothly as we go to the center.
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Besides these boundary conditions, we also need to give the equation of
state and the chemical composition of the medium. The equation of state
specifies the relationship between the pressure and temperature and is derived
later in this chapter. As we will see, the equation of state for gases, in which
the particles move at nonrelativistic speeds, is very different in comparison to
radiation.

8.6 Rosseland Mean Opacity

A star is a gaseous medium, and is opaque to photons throughout its interior.
The energy of a star is generated in the thermonuclear core. The photons
produced in the core get absorbed and scattered in the medium. The medium
is at steady state. Hence the energy gained due to absorption is simultaneously
being lost by the emission of photons. The net effect of these processes is that
the energy per photon decreases with distance from the center. However, by
energy conservation, the total number of photons increases. As we approach
the surface, the opacity becomes sufficiently small that photons can propagate
freely.

The radiative transport, or propagation, of photons through stellar in-
teriors, was discussed in Section 8.4.1. The Rosseland mean opacity, κ̄(r),
defined in Equation 8.17 governs the propagation of radiation, after averaging
over wavelengths. The main contributions to opacity were already discussed
in Chapter 7. We have several processes that lead to absorption of a contin-
uous range of frequencies. These are (1) inverse Bremsstrahlung or free-free
absorption, (2) bound-free transitions or photo-ionization, and (3) Compton
scattering. We denote the corresponding opacities as κλ,ff , κλ,bf , and κλ,cs,
respectively. The bound-free process contributes to a continuous range of pho-
ton frequencies, greater than the ionization frequency. The contribution of the
Compton scattering process is relatively small compared to other processes at
most temperatures. It contributes only at very high temperature, where the
bound electron density is small and most electrons are in the free state. In the
limit hν << mec

2, the scattering cross section is given by

σT =
8π

3

(

e2

mec2

)2

. (8.31)

This is called the Thomson cross section for the scattering of photons with
electrons. As an exercise, you can show that its value is equal to 0.665×10−28

m2. Note that this cross section is independent of frequency. This implies that
the corresponding opacity κλ,cs is independent of frequency. We also get a
contribution to opacity at discrete frequencies due to bound-bound transitions.
Here a bound electron absorbs a photon and makes a transition to another
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bound state. The frequency of the photon ν is given by hν = ∆E, where ∆E
is the energy difference between the two states. We denote the corresponding
opacity by κλ,bb. The Rosseland mean is obtained after taking the sum of all
these contributions, that is,

κλ = κλ,bb + κλ,bf + κλ,ff + κλ,es .

The mean opacity increases with an increase in density ρ. It also depends
on the composition of the medium. For fixed density and composition, it first
increases with temperature, reaches a maximum, and then starts to decrease.
In Figure 8.6 we show the mean opacity as a function of temperature for fixed
R = ρ/T 3

6 . In this plot, the mass ratios X = 0.7 and Y = 0.28 correspond to
conditions inside the solar interior. It is convenient to choose a fixed value of
R because in stellar interiors, ρ is approximately proportional to T 3. At very
high temperatures κ̄ approaches a constant value. At low temperatures, we
only have neutral atoms, predominantly hydrogen and helium, in the medium,
and opacity is dominated by bound-bound and bound-free transitions. As
the temperature increases, the free electron density starts to increase. This
contributes to free-free transition leading to a rise in opacity with temperature.
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FIGURE 8.6: The logarithm of the Rosseland mean opacity, κ̄ (cm2/g),
as a function of temperature log(T ) for parameters X = 0.7, Y = 0.28 and
log(R) = log(ρ/T 3

6 ) = −6. Here the temperature is in Kelvin, density ρ is
in g/cm3 and T6 = T/(106 K). The mass fractions X and Y correspond to
conditions inside the solar interior beyond the core. The data are taken from
OPAL opacity tables, C. A. Iglesias and F. J. Rogers, Astrophysical Journal
464, 943 (1996).
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At sufficiently high temperatures, most of the hydrogen atoms are ionized.
Hence the electron density reaches saturation beyond a certain temperature.
Furthermore, the mean free-free opacity decreases with temperature. Hence
the Rosseland mean opacity reaches a maximum and starts to decrease beyond
a certain temperature. Eventually at very high temperatures, the electron
scattering process dominates. The mean opacity becomes roughly independent
of temperature. This is essentially due to the wavelength independence of the
Thomson scattering cross section.

As explained above, radiative transport from the core of the star to the
surface happens through repeated scattering, absorption, and emission pro-
cesses. A high-energy photon in the core, produced by nuclear reactions, may
scatter to produce a lower energy photon, transferring part of its energy to
an electron. The electron may lose the additional energy by a process such as
bremsstrahlung to produce another photon. The net result is that we have a
greater number of photons, each of lower energy in comparison to the original
photon. Hence as we move outward from the center, the energy per photon,
or equivalently the radiation blackbody temperature, decreases.

The temperature and density of a star decrease with increasing radius.
Hence in different regions inside a star, different processes contribute to opac-
ity. In the cores of stars, the temperature is sufficiently high that the electron
scattering process gives the dominant contribution to opacity. As we move to
larger radius, the opacity of a star typically increases, with a larger contri-
bution coming from free-free, bound-free, and bound-bound transitions. For
main sequence stars of mass close to solar mass, radiative transport dominates
at small radius. However, for a large radius, the opacity becomes very large,
which causes very large temperature gradients. At this point, the medium
becomes unstable to convection, which starts to dominate energy transport.

Eventually, as we approach the visible surface of a star, the opacity be-
comes very small. Correspondingly, the mean free path of photons lλ =
1/(κλρ) becomes very large, and photons are able to propagate freely. The
attenuation of radiation due to absorption and scattering is governed by Equa-
tion 7.15. We can express it as

I(s) = I0e
−

∫
ds/lλ . (8.32)

For a uniform medium, I(∆s) = I0e
−∆s/lλ , where ∆s is the distance of prop-

agation.
Due to free propagation near the surface, the conditions for blackbody dis-

tribution are violated. The radiation is no longer in thermal equilibrium. Just
below the surface, the medium is opaque and the radiation remains in thermal
equilibrium. In this region, the dominant contribution to continuum opacity,
that is, opacity for a continuous range of frequencies, depends on the nature of
the star. For very hot O type stars, the electron scattering process dominates
the continuum opacity. For A and B type stars, the dominant contribution
comes from photo-ionization of hydrogen and free-free absorption. For other
stars, including the Sun, the cause of opacity near the surface remained a puz-
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zle for a long time due to their relatively low surface temperatures. At these
temperatures, the neutral hydrogen and helium atoms are predominantly in
their ground state, requiring frequencies in the ultraviolet range for ionization.
Hence these atoms cannot contribute to continuum opacity at visible frequen-
cies, which dominate the spectrum of such stars. This problem was eventually
solved by postulating the presence of H− ion in the atmospheres of these
stars. The H− ion has two electrons bound to a proton nucleus (see Figure
8.7). Its ionization energy is 0.754 eV. Hence it can be ionized by a photon at
visible or larger frequencies and thus gives rise to continuum opacity in this
range.

ee p

FIGURE 8.7: The H− ion gives dominant contribution to solar opacity near
the surface.

8.7 Equation of State

We have so far obtained the equations for the pressure, mass, luminosity, and
temperature gradient for a star in equilibrium. In order to complete the system
of equations, we need to specify the equation of state, that is, the relationship
between the pressure and temperature. We next obtain the equation of state
for radiation and gas, the two main components of stars.

Consider gas at temperature T contained inside a cubical box, which is
at rest. The individual gas particles have non-zero velocities and undergo
motions in random directions. Let us denote the velocity of the ith particle
by ~vi. Because the box is at rest, the mean velocity 〈~v 〉 of all the particles is
zero, that is,

〈~v 〉 = 1

N

∑

i

~vi = 0 , (8.33)

where N is the total number of particles. The mean value of ~v ·~v = v2, which
is equal to the square of the speed of the particle, however, is not zero. By the
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kinetic theory of gases, this is related to the temperature of the gas. Hence the
higher the temperature, the faster the motion of the particles. Notice that it
is the random motion of the particles that determines the temperature. Math-
ematically, the particle velocities follow the Maxwell–Boltzmann distribution,
discussed in the Appendix (Section 8.9).

To a good approximation we can assume the gas is ideal, that is, inter-
actions between particles are small. The gas particles are assumed to be free
and they occasionally undergo elastic collisions with other particles and with
the walls of the box. In an elastic collision, the mechanical energy remains
conserved, that is, the sum of the kinetic energies of all the particles remains
the same before and after collision. Due to collisions, the particles also exert
pressure on the walls.

We first derive the equation of state for a gas consisting of particles moving
at nonrelativisitic velocities, that is, speeds much smaller than the speed of
light. Later we generalize it to relativistic particles, such as photons.

8.7.1 Ideal Gas Law

Let us first consider a gas consisting of a single species. This means that all the
gas particles are identical. These particles may be hydrogen molecules (H2),
oxygen molecules (O2), nitrogen molecules (N2), etc. The equation of state
for such a gas is given by the formula

P =
N

V
kT , (8.34)

where P , T , N , and V , respectively, denote the pressure, temperature, number
of particles, and volume of the gas, and k is the Boltzmann constant. We derive
this basic equation later in this section.

We need to apply the gas law, Equation 8.34, for gases containing many
different species. For example, our atmosphere contains N2, O2, and other
species, such as water vapor, carbon dioxide, in small proportions. The stellar
medium also consists of many different species. In many cases, particularly in
the interior of stars, the temperature is so high that all atoms are typically
found in their ionized state. In this case, the gas consists of ions and electrons.
We next consider an ideal gas consisting of several different species such as
hydrogen, helium, and heavier elements. The heavier elements with atomic
number Z > 2 are collectively referred to as metals in Astronomy. We assume
that all these species are in thermal equilibrium at temperature T and occupy
a volume V . Each species exerts a partial pressure Pi, which is given by

Pi =
Ni

V
kT . (8.35)

Here Ni is the total number of particles of species i. Let P be the total pressure
of all the particles in the gas. This is equal to the sum of the partial pressures
exerted by each species. Similarly, N , the total number of particles of all types,
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including ions and electrons, is equal to the sum over individual species. We
can write P and N as

P =
∑

i

Pi ,

N =
∑

i

Ni , (8.36)

where the sum is over all the particle species. It is clear that P and N also
satisfy Equation 8.34. It is convenient to introduce the mean molecular weight
of the gas, defined by

µ =
M

NmH
, (8.37)

where M is the total mass of the gas and mH is the mass of a hydrogen atom.
In terms of µ, the gas law can be written as

P =
k

µmH
ρT , (8.38)

where ρ = M/V is the density of the gas. We next derive the gas law and
later generalize it to obtain the equation of state for radiation.

8.7.1.1 Derivation of the Ideal Gas Law

Consider a box of sides ∆x, ∆y, and ∆z. The coordinate system is aligned
such that the axes are parallel to the three walls of the box, as shown in Figure
8.8. Let N be the total number of gas particles in the box. We are interested in
obtaining the pressure exerted by the gas on the walls of the box. The gas par-
ticles continuously hit the wall, undergoing elastic collisions. Consider a wall
aligned along the y-z plane, perpendicular to the x-axis. A particle moving
along the x-axis undergoes a head-on elastic collision with the wall, as shown
in Figure 8.9(a). During collision, the wall exerts a sudden or impulsive force
on the particle in the −x direction. This force acts over a very short time but
has very high magnitude. Because the collision is assumed to be elastic, the
kinetic energy, mv2/2, of the particle must remain conserved in this collision.
Hence its speed remains unchanged. The particle simply bounces back with
the same speed. If the initial momentum of the particle is px = mvx, the
final momentum is −px. In general, the particle hits the wall at some angle,
as shown in Figure 8.9(b). We can analyze this collision by considering the
velocity components in the three directions independently. The x component
of the velocity again reverses direction, as before. However, the y and z com-
ponents remain unchanged because the wall exerts an impulsive force only
in the x direction. The x component of its momentum, px, changes to −px.
Hence, the change in this component is

∆px = 2px ,

with the remaining two components, py and pz, unchanged.
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FIGURE 8.8: A box of sides ∆x, ∆y, and ∆z containing gas at temperature
T and pressure P .

The particle returns to the wall after a time

∆t = 2∆x/vx .

This is easily understood. Ignore the motion in y and z directions. As far as
the motion in the x direction is concerned, the particle simply keeps bouncing
back and forth between the two opposite walls. Hence it travels a distance 2∆x
along the x direction between two consecutive collisions with a particular wall.
Here we have assumed that the particle does not collide with another particle.
It collides only with the walls of the container. This assumption is valid for a
gas at low density. The pressure exerted on the wall is given by

P =
F

A
=

∑

∆px/∆t

∆y∆z
=

∑

pxvx
∆x∆y∆z

,

where A = ∆y∆z is the area of the wall, and the sum in the numerator is
over all the particles in the box. We can express the pressure as

P =
N < pxvx >

V
, (8.39)

where V is the volume of the box, N is the total number of gas particles, and
< pxvx > is the mean value of the product pxvx over the gas particles.
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FIGURE 8.9: A particle undergoing elastic collision with a wall in the y-z
plane. The z component points outward, perpendicular to the plane of the
paper. (a) The incoming particle, moving in the +x direction, undergoes a
head-on elastic collision with the wall. After collision, the particle reverses
its direction, while its speed remains unchanged. (b) The particle is incident
at an angle. After collision, the x component of the velocity of the particle
reverses its direction, while its remaining components remain unchanged.

We next write the momentum of the gas particles, assumed to be moving
at nonrelativistic speeds (v << c), as px = mvx to get

P =
Nm < v2x >

V
.

Assuming isotropy, that is, all directions are equivalent, we find < v2x >=<
v2y >=< v2z >=< v2 > /3. The last step follows because v2 = v2x + v2y + v2z .
We may also perform the angular averaging directly by using spherical polar
coordinates. We have, for example,

< v2z >=< v2 cos2 θ >=< v2 >

∫ π

0
dθ sin θ cos2 θ
∫ π

0
dθ sin θ

=< v2 > /3 , (8.40)

where
〈

v2
〉

represents the thermal average of v2. Therefore the pressure is
given by

P =
Nm < v2 >

3V
. (8.41)

We assume that the speeds of the gas particles follow the Maxwell–Boltzmann
distribution. Using the standard result from the kinetic theory of gases (see
Section 8.9),

< v2 >=
3kT

m
,

we obtain the standard gas equation of state,

P =
NkT

V
. (8.42)
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We can also express this in terms of the energy of the gas by using E = N <
ǫ >= Nm < v2 > /2, where < ǫ > is the mean value of energy per particle.
We obtain

P =
2E

3V
. (8.43)

We next determine the mean molecular weight, µ, defined in Equation
8.37, in terms of the relative mass abundance of different elements in the star.
Let M = ρV be the total mass of the gas in volume V . Let X, Y , and Z ′

respectively, denote the relative mass abundance of hydrogen, helium, and
metals (elements with Z > 2). It is clear that

X + Y + Z ′ = 1 .

In the stellar interiors, all hydrogen and helium atoms are ionized. Hence
each hydrogen atom contributes two particles to the gas, an electron and a
proton. It also contributes a unit mass, in atomic mass units. Similarly, a
helium atom contributes three particles, the nucleus and two electrons, and
has mass equal to 4. Let us denote the number densities of hydrogen and
helium nuclei by NH , NHe, respectively. The number of particles contributed
to the medium by hydrogen and helium are, therefore, 2NH and 3NHe. We
ignore the contribution due to metals, whose contribution is small and will be
included later. The total number of particles can be expressed as

N = 2NH + 3NHe .

The relative mass abundance of hydrogen and helium is given by

X =
NHmH

M
, (8.44)

Y =
4NHemH

M
. (8.45)

Note that the mass of each hydrogen atom is approximately mH and that of
helium atom is 4mH . Here we neglect the nuclear and atomic binding energies.
Hence we find

N =
M

mH
(2X + 3Y/4) .

This leads to the mean molecular weight:

µ =
M

NmH
=

1

2X + 3Y/4
. (8.46)

We next compute the contribution due to a heavier element. Consider an
atom with atomic number Z and weight A. Let us assume that it is partially
ionized and contributes Z̄ particles to the gas. If we assume that it is fully
ionized, then Z̄ = Z +1. Let NA be the number density of these ions and XA
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its relative mass abundance. The mass fraction due to a heavy element can
be expressed as

XA =
NAAmH

M
.

This finally gives the formula for the mean molecular weight, including the
contribution from a heavier element, as

µ =
1

2X + 3Y/4 + Z̄XA/A
. (8.47)

The contribution from all the heavier elements can be included in this manner.

8.7.1.2 Radiation Pressure

We next obtain an expression for pressure exerted by a photon gas. In this case
the speed of photons, v = c. We assume that the photon frequencies follow
the blackbody distribution at temperature T . The energy and momentum of a
particle of mass m moving at velocity close to c is given by the special theory
of relativity. These can be written as

ǫ = mγc2 , (8.48)

~p = mγ~v , (8.49)

respectively, where γ = 1/
√

1− v2/c2. Eliminating m from these equations
we obtain

~p =
ǫ

c2
~v . (8.50)

The equations for ǫ and ~p, Equations 8.48 and 8.49, respectively, break down
in the limit of zero mass and v → c. This is because γ → ∞ as v → c.
However, the relationship between ǫ and ~p, Equation 8.50, is valid for all
particles, including photons. It also implies that the energy of a relativistic
particle, ǫ = pc, where p is its total momentum.

Assuming isotropy, we have

< pxvx >=< pyvy >=< pzvz >=
1

3
< ~p · ~v >= 〈ǫ〉

3
. (8.51)

We also have, for example,

< pzvz >=
〈 ǫ

c2
vzvz

〉

=
〈

ǫ cos2 θ
〉

=
〈ǫ〉
3
. (8.52)

Substituting in Equation 8.39 we obtain

P =
N 〈ǫ〉
3V

=
E

3V
=

4π

3c
I , (8.53)

where I is the intensity of radiation and we have used the formula for the
energy density of the blackbody u = E/V = 4πI/c. The blackbody intensity is
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given by I = σT 4/π, where σ is the Stefan–Boltzmann constant. We eventually
find the pressure

P =
1

3
aT 4 , (8.54)

where a = 4σ/c.

8.8 Energy Production in Stars

The stars produce energy through nuclear fusion in their cores. This is now
well known and observationally verified. However, this question had puzzled
scientists for a long time. At the time when the phenomenon of nuclear fusion
was unknown, scientists tried to explain the solar luminosity by the known
energy production mechanisms at that time. These included the release of
gravitational and chemical energies. Gravitational potential energy is released
as the star slowly contracts during its life cycle. One can determine the total
amount of gravitational potential energy released by the Sun so far. This can
then be compared to the total energy radiated by the Sun. However, in order
to do so, we need to know the lifetime of the Sun and also its luminosity during
this period. Historically, in the nineteenth century, these quantities were not
well known. Hence scientists assumed that the source of stellar energy may be
gravitational potential energy or chemical reactions and thus computed the
lifetime of the Sun based on this hypothesis.

Let’s first determine the total amount of energy that can be released due
to gravitational potential energy. Consider a star of radius R, mass M , and
density ρ. The potential energy of a spherical shell of radius r, thickness dr,
and mass dm is dUg = −GM(r)dm/r. Here,M(r) is the mass contained within
radius r of the star and dm = 4πr2drρ. Hence the total potential energy of a
star of radius R and density ρ is

Ug = −4πG

∫ R

0

drM(r)ρr . (8.55)

In order to perform this integral, we need the dependence of ρ on r. Here we
are only interested in an order of magnitude estimate. By assuming a constant
ρ and ignoring the overall dimensionless factor, we obtain

Ug ∼ −GM
2

R
. (8.56)

We next need to determine the total mechanical energy of a star, given
by E = K + Ug, where K denotes the kinetic energy. In order to do so, we
use the virial theorem, as derived in Chapter 5. The theorem, Equation 5.23,
states that, for a system in equilibrium, −2 < K >=< U >, where < x >
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denotes the average of the quantity x over time. Hence the total mechanical
energy of a star is

E =< K > + < U >=
1

2
< U > . (8.57)

Using the formula for gravitational potential energy, we find

E ∼ −1

2

GM2

R
. (8.58)

Let’s apply this to the Sun, assuming that initially its radius was extremely
large. Hence its energy at that time was zero. Its final energy is

Ef ∼ −1

2

GM2
S

RS
,

where MS is its mass and RS its radius today. Hence the total gravitational
energy released by the Sun over its lifetime is

∆Eg ≈ 1

2

GM2
S

RS
≈ 1048 ergs . (8.59)

In order to compare with observations, we can assume that the luminosity of
the Sun was roughly uniform throughout its lifetime and equal to its lumi-
nosity today (LS = 3.9 × 1033 ergs/sec). With this assumption we obtain an
estimate of the lifetime of the Sun,

∆t = tth =
∆Eg

LS
≈ 107 years , (8.60)

where we have included only the gravitational energy. This is called the ther-
mal or Kelvin-Helmholtz time scale in honor of the scientists who proposed
this mechanism for solar luminosity. The corresponding time scale of the Sun,
assuming that the chemical energy dominates, turns out to be smaller in com-
parison to the Kelvin-Helmholtz time scale. Hence, before the discovery of
nuclear reactions, this was believed to be a reasonable estimate of the lifetime
of the Sun.

There now exists considerable evidence that tth is much lower than the
actual lifetime of the Sun. One can use radioactive dating to determine the
age of lunar rocks or meteorites. This gives an age on the order of 4×109 years.
The rocks on Earth give a much lower value, perhaps because the earlier rocks
may have been destroyed. In order to compare this age with the time scale tth,
one has to assume that the luminosity of the Sun has not changed significantly
over most of its lifetime. This can be justified by considering geological and
biological activity, which requires the current luminosity of the Sun over a time
period larger than 109 years. Incidentally, the earlier theoretical estimate of
the lifetime of the Sun, tth, was used as evidence against Darwin’s theory
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of biological evolution. Later it was found that Darwin’s theory is consistent
with observations if the Sun is powered by nuclear energy.

We next make an estimate of the energy generated in the Sun through
nuclear fusion. The basic fusion reaction that occurs inside the Sun’s core is
the fusion of hydrogen to form helium. There are several different processes
or chains that contribute to this reaction. One of the dominant chains that
contributes can be represented as

4 1H → 4He + 2e+ + 2νe + 2γ ,

where e+, νe, and γ represent a positron, neutrino, and a photon, respectively.
Here AX denotes the nucleus X with mass number A. The reaction basically
converts four hydrogen nuclei into a helium nucleus. During this process about
0.7% of the rest energy of the nuclei is released. We will make a detailed
estimate of this energy later. Here we make a rough estimate by assuming
that all the hydrogen in the inner core of the Sun, which contains about 10%
of the solar mass, converts to helium. Hence the energy released is

Enuclear ≈ 0.1× 0.007×MSc
2 ≈ 1051 ergs . (8.61)

This gives an estimate of the lifetime of the Sun, called the nuclear time scale,
of

tnuclear =
Enuclear

LS
≈ 1010 years . (8.62)

Hence we find an estimate that is consistent with all observational evidence
for the lifetime of the Sun. This provides considerable evidence that the source
of solar energy is the nuclear fusion reactions in its core. We consider stellar
nuclear reactions in more detail in the next chapter.

8.9 Appendix: Maxwell–Boltzmann Distribution

Consider an ideal gas at temperature T . The probability of finding particles
with kinetic energy lying between energy E and E + dE is given by

f(E)dE = f0e
−E/kT dE , (8.63)

where k is the Boltzmann constant and f0 is the normalization. This is the
Maxwell–Boltzmann distribution. The normalization is chosen such that

∫ ∞

0

f(E)dE = 1 . (8.64)

Let m be the mass of gas particles. The kinetic energy of a particle moving
with velocity ~v is mv2/2, v2 = v2x + v2y + v2z . In terms of velocity we can write
the distribution as

f(vx, vy, vz)d
3v = f0e

−mv2/2kT d3v . (8.65)



162 An Introduction to Astronomy and Astrophysics

Integrating, we obtain

1 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(vx, vy, vz)dvxdvydvz = f0

(

2πkT

m

)3/2

. (8.66)

Hence, the distribution can be expressed as

f(vx, vy, vz)d
3v =

( m

2πkT

)3/2

e−mv2/2kT d3v . (8.67)

Let N be the total number of particles in the gas in volume V . Hence the
number of particles in this volume having a velocity between (vx, vy, vz) and
(vx+dvx, vy+dvy, vz+dvz) is equal to Nf(vx, vy, vz)d

3v. We can now compute
the mean square velocity, 〈v2〉, of a gas particle. This is given by

〈v2〉 =
∫

d3vv2f(vx, vy, vz) , (8.68)

where the integral is over the entire range of velocities. We obtain

〈v2〉 = 3kT

m
. (8.69)

Exercises

8.1 Use the equation for hydrostatic equilibrium, Equation 8.7, to determine
the pressure as a function of height for the Earth’s atmosphere. In this
case, we can neglect the curvature of the Earth and the equation becomes

dP

dz
= −ρg ,

where z is the vertical distance above the surface. For small z, we can
treat g as constant. Eliminate ρ from this equation by using Equation
8.38. Show that the solution can be written as

P (z) = P0 exp

[

−gµmH

k

∫ z

0

dz′

T (z′)

]

,

where P0 is the pressure at the surface of the Earth. As a very rough
approximation for small z (z < 100 Km), assume that T (z) = T0 − βz,
where T0 = 300K and β = 1K/Km, that is, the temperature changes by
1K per Km. Determine P (z) in this case.

8.2 The pressure, P (z) near the Earth’s surface (z < 100 Km) can be ap-
proximated as

P (z) ≈ P0e
−z/z0 ,

where z is the altitude, z0 ≈ 7.3 Km, and P0 ≈ 101, 000 Pa (Pa =



Stellar Structure 163

N/m2). Assume that in some region the ambient temperature at the
surface is T0 = 300K and decreases with height at the rate of 15K/Km.
Determine whether the air is stable or unstable to convection in this
region. Assume γ = 7/5, applicable for diatomic gases, N2 and O2.

8.3 Determine the numerical value of the Thomson cross section, using
Equation 8.31. You can use the relationship

α =
e2

~c

to replace e2 in terms of ~ and c. Note that α ≈ 1/137 is the fine
structure constant.

8.4 Derive Equation 8.24 for the temperature gradient by following the steps
explained in text.

8.5 Perform the integral in Eq. 8.55 to obtain Ug assuming that the density
is constant, ρ = M/(4πR3/3). Verify that you obtain Equation 8.56 up
to an overall factor of order one.

8.6 Verify the estimates of the gravitational potential energy and nuclear
energy of the Sun, given in Equations 8.59 and 8.61, respectively.

8.7 Determine the mean molecular weight by including the contribution due
to all metals. Assume that all metals are ionized and replace Z̄ = Z+1.
Furthermore, assume that Z + 1 ≈ A/2. With these approximations,
show that

µ =
1

2X + 3Y/4 + Z ′/2
, (8.70)

where Z ′ is now interpreted as the total mass fraction of all elements
with Z > 2.

8.8 Perform the integrals in Equation 8.66. You can use

∫ ∞

−∞
dx e−x2

=
√
π .

Also derive Equation 8.69 by performing the integrals in Equation 8.68.
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The possibility that nuclear fusion reactions may be the dominant source of the
energy of stars was first suggested by Arthur Eddington in 1920. However, at
that time, a detailed mechanism was unknown. Later, in 1928, George Gamow
showed that nuclear reactions proceed through the quantum mechanical tun-
neling process. A comprehensive treatment of the two main reaction chains,
the PP chain and the CNO cycle, which contribute to the main sequence stars,
was provided by Hans Bethe in 1939. This work firmly established the validity
of the fusion hypothesis.

The cores of main sequence stars consist predominantly of hydrogen and
helium nuclei. Heavier nuclei as well as isotopes of hydrogen and helium are
also present, but at very small densities. The energy production of the main
sequence stars is dominated by fusion reactions that convert hydrogen into
helium. The nuclear reaction proceeds predominantly by two-body collisions
because the probability of three particles undergoing a nuclear reaction is
extremely small. The PP chain consists of a series of reactions that effectively
convert four hydrogen nuclei into a helium nuclei. The CNO cycle utilizes
carbon, oxygen and nitrogen as catalysts to convert hydrogen into helium.
Before discussing nuclear reactions, we review some basic concepts.

165
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9.1 Fundamental Interactions

The fundamental forces or interactions that contribute in nuclear reactions
are

1. Strong interactions

2. Electromagnetic interactions

3. Weak interactions

Besides gravity, these are the only known fundamental forces. Gravity is neg-
ligible compared to other forces in nuclear reactions.

The strong interaction is the force responsible for nuclear fusion. It acts
only on particles such as protons, neutrons, and other exotic particles such
as pions, kaons, etc. These particles are collectively called hadrons and are
composed of fundamental particles called quarks. This force does not act on
particles such as electrons and photons. The strong force between particles is
very large if they are within a distance of approximately 1 fm (1 fm = 10−13

cm) from one another. At larger distances, the force dies off very rapidly. It
is responsible for binding the atomic nucleus and hence is also referred to as
the nuclear force.

The electromagnetic force acts on all charged particles. It also acts on neu-
tral particles, such as atoms, if they are bound states of charged particles. The
photon acts as a messenger of this force. Two particles interact electromag-
netically by exchanging a photon. Due to this interaction, a particle can also
emit or absorb a photon. The electromagnetic force is a long-range force. At
short distances, on the order of 1 fm, it is very weak compared to the strong
force. However, at larger distances, it dominates.

The weak force is responsible for processes such as β-decay, which converts
a neutron into a proton or a proton into a neutron. A free neutron can convert
to a proton by the reaction

n→ p+ + e− + ν̄e . (9.1)

Here the symbol ν̄e denotes an electron anti-neutrino. A free proton cannot
decay into a neutron because its mass is smaller than that of a neutron. How-
ever, in a bound state or in the presence of other particles, it can convert to a
neutron. The weak force has very short range. At the distance of 1 fm, relevant
to nuclear reactions, it is very weak compared to strong and electromagnetic
interactions. Furthermore, it decays rapidly with an increase in distance.

A reaction that proceeds by strong interactions has a much higher rate in
comparison to reactions driven by electromagnetic or weak forces. The rate is
smallest for a reaction driven by weak interactions. Hence a nuclear reaction
that involves a weak force will proceed at a relatively slow rate in comparison
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to that which proceeds by a strong force. Let’s consider, for example, the PP
chain that starts with the fusion of two protons. A fusion reaction between
two protons by means of nuclear force is not possible because there does not
exist a stable isotope with Z = 2 and A = 2. The only possibility is to convert
one of the protons into a neutron by the weak force and form a deuteron
2H. Hence the rate of this reaction is extremely slow compared to subsequent
reactions, which involve fusion of deuteron nuclei.

9.2 Fundamental Particles

The known fundamental particles are photons, gluons, W+, W−, Z, Higgs,
leptons, and quarks. The photons and gluons act as mediators of electromag-
netic and strong interactions, respectively. There are eight different types of
gluons. The W+, W−, and Z particles mediate the weak interactions. All of
these particles, that is, photons, gluons, W+, W−, Z, and Higgs are bosons.
In contrast, leptons and quarks are fermions. These have spin 1/2 in units of
~. We next list some basic properties of these particles:

1. Leptons: Leptons are particles such as electrons, muons, and neutrinos
that do not participate in strong interactions. The known leptons in-
clude electron, muon, τ -lepton, electron neutrino, muon neutrino, and τ
neutrino, denoted by

e− , µ− , τ− , νe , νµ , ντ ,

respectively. We assign lepton number 1 to all of these particles. The
corresponding anti-particles, positron, anti-muon, anti-τ -lepton, electron
anti-neutrino, muon anti-neutrino, and τ anti-neutrino are denoted by

e+ , µ+ , τ+ , ν̄e , ν̄µ , ν̄τ ,

respectively. These are assigned lepton number −1. The total lepton
number is conserved in all reactions.

2. Quarks: In analogy with leptons, there are six different types or flavors
of quarks, called up, down, strange, charm, bottom, and top. These are
denoted by

u , d , s , c , b , t .

Here we have listed them in increasing order of their masses. The electric
charge of these quarks are 2/3,−1/3,−1/3, 2/3,−1/3, 2/3, respectively,
in units of the charge of proton. We assign baryon number 1/3 to each
of these quarks. The corresponding antiparticles are denoted by

ū , d̄ , s̄ , c̄ , b̄ , t̄ .
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Each of these are assigned baryon number −1/3. Just as the lepton
number, the baryon number is also conserved in all reactions.

A surprising fact about quarks is that they are never observed as free
particles. For example, we can see a track of an electron inside par-
ticle detectors. Despite extensive experimental effort, it has not been
possible to observe a similar track of a quark. Quarks always remain
confined inside hadrons. By definition, hadrons are particles that par-
ticipate in strong interactions. These are classified into baryons, which
are fermions, and mesons, which are bosons. Baryons are bound states
of three quarks, whereas mesons are composed of a quark and an anti-
quark. Familiar examples of baryons are protons and neutrons. Because
these are composed of three quarks, their baryon number is 1. Similarly,
an anti-proton has baryon number equal to −1. All mesons are very
short-lived particles and decay very quickly after being produced in a
laboratory.

Baryon number conservation is responsible for the stability of protons
and other atomic nuclei. This is because proton is the lightest baryon.
Hence, by baryon number and energy conservation, it cannot decay. It
can annihilate into two photons if it encounters an anti-proton. However
there do not exist any anti-protons in most regions of the Universe today.
On Earth they can only be produced in very high energy laboratories.
In nuclear reactions in stellar cores also, anti-protons and anti-neutrons
never appear since the energy is not sufficiently high to create these
particles.

9.3 A Brief Introduction to Neutrinos

As we have already mentioned, there are three types of neutrinos: electron
neutrino, muon neutrino, and τ neutrino, denoted by

νe , νµ , ντ ,

respectively, as well as the anti-particles, electron anti-neutrino, muon anti-
neutrino, and τ anti-neutrino, denoted by

ν̄e , ν̄µ , ν̄τ ,

respectively. Neutrinos are electrically neutral, have spin ~/2, and have very
small mass, mν < 1 eV/c2. They interact only through weak interactions. At
energies on the order of 1 MeV, relevant to nuclear reactions, their interactions
are extremely weak compared to other particles. Hence their mean free path
through matter is very large, on the order of 1020 cm in the Earth or Sun.
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This is roughly equal to 109 times the solar radius. Hence both the Earth and
Sun are transparent to neutrinos. A beam of neutrinos can pass through the
Earth or Sun without significant attenuation. Due to their large mean free
path, they are able to emerge even from very dense astrophysical regions. For
example, we are able to directly observe the neutrinos produced in the core
of the Sun. In contrast, the photons are unable to escape from the core. The
electromagnetic radiation we see originates near the surface of the Sun. The
observed flux of neutrinos from the Sun, with energies on the order of 1 MeV,
provides direct evidence that nuclear fusion reactions are the dominant source
of solar energy.

9.4 PP Chain

As we have already mentioned the energy production in main sequence stars
is dominated by the PP chain and the CNO cycle. These processes convert
hydrogen to helium. Such reactions that release energy are called exothermic.
In contrast, the reactions that consume energy are called endothermic. The
PP chain consists of three separate chains, PP1, PP2, and PP3. The nuclear
reactions corresponding to the PP1 chain are as follows:

1H+ 1H → 2H+ e+ + νe ,
1H+ 2H → 3He + γ ,

3He + 3He → 4He + 2 1H . (9.2)

The symbol AX denotes the nucleus X with mass number A. The positron
produced in the first reaction combines with an electron in the medium to
produce photons

e+ + e− → γ + γ . (9.3)

The reactions produce energy in the form of kinetic energy of nuclei and
photons that enhance the temperature of the medium. Some energy is also
carried by the neutrino. This does not get converted into thermal energy
because the neutrino escapes the Sun without any interactions.

The first reaction in Equation 9.2 involves both weak and strong interac-
tions. The weak interactions convert one of the protons, (1H), into a neutron.
The proton and the neutron then undergo fusion to form a deuteron. Hence
this process is very slow. Because this has the smallest reaction rate among
all the processes in the PP1 chain, it determines the total rate of the PP1
chain. Interestingly, the slow rate of this process is responsible for the long
lifetime of the Sun. The PP1 chain produces about 85% of the solar energy.
The remaining 15% is produced by the PP2 chain and a very small fraction
by the PP3 chain. The first two reactions are common to all three PP chains.
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The subsequent PP2 chain reactions are

3He + 4He → 7Be + γ , (9.4)
7Be + e− → 7Li + νe , (9.5)
7Li + 1H → 2 4He . (9.6)

The corresponding reactions for the PP3 chain are

3He + 4He → 7Be + γ , (9.7)
7Be + 1H → 8B+ γ , (9.8)

8B → 8Be + e+ + νe , (9.9)
8Be → 2 4He . (9.10)

The PP chain dominates the solar energy production.
Besides the PP chain, the CNO cycle also contributes to the energy pro-

duction of the main sequence stars. The PP chain dominates for stars whose
mass is less than 1.3 solar mass. The CNO cycle dominates for higher mass
stars. For such stars, the central temperature is higher. The CNO reaction
rate increases much more rapidly with temperature in comparison to that of
the PP chain. Hence it dominates energy production in stars of larger mass.
The dominant CNO cycle consists of the following series of reactions:

12C+ 1H → 13N+ γ , (9.11)
13N → 13C+ e+ + νe , (9.12)

13C+ 1H → 14N+ γ , (9.13)
14N+ 1H → 15O+ γ , (9.14)

15O → 15N+ e+ + νe , (9.15)
15N+ 1H → 12C+ 4He , (9.16)

where, besides helium, the reaction produces photons, electrons/positrons,
and neutrinos. Notice that this set of reactions does not lead to any change
in the abundance of carbon, nitrogen, and oxygen. These act as catalysts.

9.5 Nuclear Reaction Rate

In the main sequence phase, the energy of stars is provided by the conversion of
hydrogen into helium. Inside the stellar cores, the temperature is so high that
all the atoms are completely ionized. Let’s consider the basic fusion reaction
that converts two protons into a deuteron nucleus:

2 1H → 2H .
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In order to undergo fusion, the protons have to overcome the Coulomb barrier
and come within a distance of 1 fermi of each other. At this distance, the
nuclear attractive forces dominate over the Coulomb repulsion and fusion
can take place. The electromagnetic Coulomb potential energy between two
particles of charge Z1e and Z2e at distance r is given by

U(r) =
Z1Z2e

2

r
, (9.17)

in CGS units. This is illustrated in Figure 9.1. For short distances, approxi-
mately less than 1 fm, the attractive nuclear potential dominates. The poten-
tial energy becomes negative in this region. The precise form of the nuclear
potential is unknown theoretically. Here we have simply assumed that it is
independent of r.

Umax
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U
(r
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E

minr
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FIGURE 9.1: The nuclear and Coulomb potential experienced by two nu-
clei undergoing fusion is shown schematically by the solid curve. The repul-
sive Coulomb potential dominates for r greater than about 1 fm. At short
distances, the attractive nuclear potential, which is assumed to be constant
here, dominates. The dashed line represents the total energy of a particle that,
classically, is unable to cross the Coulomb potential barrier.

Within the framework of classical mechanics, fusion is possible only if the
energy of the particles is sufficient to cross the Coulomb barrier. Let us, for
example, consider two nuclei, of masses m1 and m2 with velocities ~v1 and ~v2
and position vectors ~r1 and ~r2, respectively. Their total energy can be written
as

E = K + U , (9.18)

where K and U represent, respectively, their kinetic and potential energies.
The kinetic energy is given by

K =
1

2
m1v

2
1 +m2v

2
2 . (9.19)
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We define the relative velocity ~v between the two particles as

~v = ~v1 − ~v2 . (9.20)

Their center of mass velocity is given by

~Vc =
m1~v1 +m2~v2
m1 +m2

. (9.21)

In terms of these, we can express K as

K =
1

2

m1 +m2

2
V 2
c +

1

2
µv2 , (9.22)

where
µ =

m1m2

(m1 +m2)
(9.23)

is called the reduced mass. The first and second terms on the right-hand side
of Equation 9.22 represent the kinetic energies of the center of mass motion
and the relative motion, respectively. The center of mass motion is not of
interest here. As we will explicitly see later, it does not play any role in the
formula for reaction rate. Hence we will set Vc = 0 by going into the center
of mass frame and focus here on the relative motion. The energy of the two
nuclei system is then

E =
1

2
µv2 + U(r) . (9.24)

We can now treat this two-particle system as a single particle of mass µ at
position ~r = ~r2 − ~r1 and velocity ~v.

For very large r, U(r) → 0 and hence v is maximum. As the two particles
approach one another, r decreases and the Coulomb potential starts to rise.
Their relative speed decreases. Let us assume that the energy E is less than
Umax, the maximum height of the potential, as shown in Figure 9.1. Classically,
the two particles will then approach within a minimum seperation, rmin, at
which point v = 0. This is indicated in Figure 9.1 by the point where E
(dashed line) meets the potential energy curve. Beyond this time they will
again start moving apart and hence will not be able to undergo fusion. Thus,
classically, fusion is possible only if E ≥ Umax. The energy of the protons
follows the Maxwell–Boltzmann distribution. At any temperature T , there
would be a few protons that have enough energy to overcome the Coulomb
barrier and undergo fusion.

The process is properly treated within the framework of quantum me-
chanics. The phenomenon of quantum tunneling considerably enhances the
probability for fusion to occur. In this case, fusion can occur even if the pro-
ton does not have enough energy to overcome the Coulomb barrier, that is,
E < Umax. This can be understood by realizing that in quantum mechanics,
the position of a particle is not well defined. The uncertainty in the position
can be obtained by Heisenberg’s uncertainty principle. The probability for a
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particle to be at position x is given by ψ∗(x)ψ(x), where ψ(x) is the wave
function. The wave function does not become identically zero even in regions
where the particle is prohibited by classical mechanics. These are regions it
is unable to reach classically due to insufficient kinetic energy. However, be-
cause its wave function is nonzero, the probability of finding a particle, even
in these regions, is nonzero. This leads to a much higher probability for fusion
in comparison to what is predicted by classical mechanics.

We next obtain the formula for the reaction rate for this process. For this
we require the velocity or energy distribution function of protons or nuclei.
This is given by the Maxwell–Boltzmann distribution function (Section 8.9),

n(vx, vy, vz)d
3v = N

( m

2πkT

)3/2

e−mv2/2kT d3v , (9.25)

where N is the total number density of particles. We next need the proba-
bility for the fusion reaction to occur. This is expressed in terms of the cross
section, σ(E), discussed in Chapter 7. This can be visualized as the effective
cross-sectional area of the target particle, as discussed earlier. If the incoming
particle strikes within this area, then the reaction occurs. Otherwise the two
particles do not scatter.

We have discussed some examples of cross section in Chapter 7. Here we
consider another interesting example of the scattering of an electron on a
charged target, which may be a proton, nucleus, or another electron. In this
case, the interaction between the two particles is given by the Coulomb poten-
tial, which is a long-range potential. This means that it is not negligible even
when the particles are very far apart, or when the impact parameter is very
large. Within the framework of classical mechanics, the total scattering cross
section can be deduced by solving Newton’s equations of motion. In this case,
one finds that the total cross section is infinite. A more appropriate quan-
tity in this case is the differential cross section dσ/d cos θ, which is finite and
measures the probability of scattering at an angle θ (for details see Classical

Mechanics by H. Goldstein).
In quantum mechanics we cannot precisely specify both the position and

momentum of the particle simultaneously. Hence it is meaningless to say that
we have an incident particle of momentum ~p striking a target at impact pa-
rameter b as we did in Chapter 7 (see Figure 7.17). Here the cross section
simply represents the probability that an incident particle of momentum ~p
may scatter from a target. However, we can keep the same physical picture in
mind to get an intuitive understanding the concept of cross section.

We next give a precise definition of cross section, valid both in classical and
quantum mechanics. Consider a beam consisting of a large number of identical
particles scattering from a target. The cross section between the beam and
target particles is defined as

σ(v) =
number of reactions/target particle/time

number of incident particles/area/time
. (9.26)
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The denominator in this equation is simply the beam flux. In order to measure
the cross section between two particles, an experimentalist can set up one of
these as beam particles, of known flux, and the other as target particles, at
rest in the laboratory, of known density. The experimentalist would measure
the number of reactions that occur over a given interval of time. Then the
cross section can be extracted by using Equation 9.26. Alternatively, once we
know the cross section for scattering between two particles, we can use this
equation to determine the reaction rate in any experiment.

Before considering the reactions in the solar core, let’s consider an idealized
situation where the target particles are all at rest and the beam particles are all
moving with the same velocity ~v. This is applicable to many laboratory nuclear
experiments, where, very often, one has a target at rest in the laboratory that
undergoes collision with a uniform beam of particles. Even in the case of two
uniform colliding beams, one can go into a frame in which one set of particles
is at rest. The conditions in the solar core, however, differ from this as both
colliding particles follow Maxwell-Boltzmann distribution. Hence they move
in all directions and there is no frame in which the target particles are all at
rest.

FIGURE 9.2: A beam of particles with velocity ~v incident normally on a
cross-sectional area A. The number of particles crossing the area A in time dt
is equal to the number of particles in length v dt of the cylinder.

Let us denote the incident particle by 1 and the target by 2. We are
interested in determining R12, which is defined as the total number of reactions
per unit time per unit volume. Then,

number of incident particles/area/time = N1v , (9.27)

where N1 is the number density of incident particles. We can easily obtain
this equation by considering a cylinder with its axis parallel to beam velocity,
as shown in Figure 9.2. Let the cross sectional area of the cylinder be A. The
number of particles crossing A in time dt is equal to the number of particles
in length v dt of the cylinder, which is equal to N1v dtA. Hence,

number of incident particles/area/time =
N1vAdt

Adt
,

which gives Equation 9.27. Using Equation 9.26, we find that the reaction rate
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per unit volume, R12, can be expressed as

R12 = N1N2σ(v)v , (9.28)

where N2 is the density of target particles. If the target is also in motion, then
~v is equal to the relative velocity between the beam and target particles.

We have so far obtained the reaction rate for a very special case, target
particles at rest and beam particles moving in a particular direction. In the
stellar interior, particles are moving randomly in all possible directions. Their
velocities are specified by the Maxwell-Boltzmann distribution. There is no
frame in which we can reduce the problem to the simple case discussed above.
We derive the general result below. Here we first give the final answer. In the
general case, the reaction rate per unit volume, R12, can be expressed as

R12 = λ12N1N2 , (9.29)

where λ12 = 〈σ(v)v〉 is the average of the cross section, σ(v) times v over the
velocity distribution of the particles in the medium. The precise expression is
given below. We next give a detailed derivation of this formula.

9.5.1 Nuclear Reaction Rate: Derivation

We first assume that the target particles are at rest. The beam particles have
a velocity distribution n1(vx, vy, vz). The rate equation can be obtained by
applying the arguments for the case of uniform beam to beam particles in an
infinitesimal velocity interval, d3v, and then integrating over the velocity. We
obtain

R12 =

∫

σ(v)vn1(~v)N2d
3v . (9.30)

The distribution function is normalized such that
∫

n1(~v)d
3v = N1 ,

the total number density of beam particles. All the quantities inside the in-
tegrand depend only on the magnitude of the velocity ~v. Hence we can also
express the rate as

R12 = N1N2 < σ(v)v > , (9.31)

where

< σ(v)v >=

∫ ∞

0

σ(v)vf(v)dv , (9.32)

and f(v) is a distribution function, normalized such that

∫ ∞

0

f(v)dv = 1 .
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In the case of fusion reactions inside the solar core, the distribution func-
tion of both the beam and target particles is described by the Maxwell-
Boltzmann distribution function. Let us denote the beam and target velocities
by ~v1 and ~v2 respectively and the velocity distribution of target particles by
n2(v2x, v2y, v2z). Consider the target particles in an infinitesimal velocity in-
terval d3v2. The number density of these particles is equal to n2d

3v2. The
reaction rate over this infinitesimal interval is given by

dR12 = n2(~v2)d
3v2

∫

σ(v)vn1(~v1)d
3v1 . (9.33)

Here v denotes the magnitude of the relative velocity v = |~v1 − ~v2|. Finally
integrating over d3v2 we obtain the total reaction rate as

R12 =

∫

σ(v)vn1(~v1)n2(~v2)d
3v1d

3v2 . (9.34)

This gives us

R12 = N1N2

∫

σ(v)v
( m1

2πkT

)3/2 ( m2

2πkT

)3/2

exp

(

−m1v
2
1

2kT
− m2v

2
2

2kT

)

d3v1d
3v2 .

We next change variables from ~v1, ~v2 to center of mass velocity ~Vc and relative
velocity ~v. The relationship between the two is given in Equation 9.64. The
Jacobian of this transformation is unity. Hence we find that

R12 = N1N2
(m1m2)

3/2

(2πkT )3

∫

σ(v)v exp

(

− (m1 +m2)V
2
c

2kT
− µv2

2kT

)

d3Vcd
3v ,

where µ is the reduced mass. Because the distributions are normalized,

∫

d3Vc

(

m1 +m2

2πkT

)3/2

exp

(

− (m1 +m2)V
2
c

2kT

)

= 1 ,

we again obtain Equation 9.29 with,

< σv >=
( µ

2πkT

)3/2
∫

vσ(v) exp

(

− µv2

2kT

)

4πv2dv . (9.35)

In this derivation we have assumed that the two colliding particles are distinct.
In case these two particles are identical, then the factorN1N2 must be replaced
by N2/2, where N is the number density of the particles. The factor of 1/2
arises in order to avoid double counting. We can obtain this by counting the
number of distinct pairs we can make for a system consisting of N particles,
with N >> 1.
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9.5.2 Nuclear Cross Section

We next theoretically obtain a formula for the cross section of a fusion reaction
between two nuclei. This is given by fundamental physics and involves several
concepts. A detailed derivation is beyond the scope of this book and here we
simply provide an outline. The cross section has dimensions of area. Hence we
can express it as

σ(E) ∝ λ2 ,

where λ is some suitable length scale associated with the process and E =
µv2/2 is the kinetic energy, ignoring the center of mass motion. The relevant
length scale here is the de Broglie wavelength λ = h/p, where p = µv. Hence
we obtain

σ ∝ h2

p2
∝ 1

E
.

We next need to include the factor corresponding to the quantum mechani-
cal probability for barrier penetration. This is proportional to exp(−2π2U/E),
where U is the height of the Coulomb barrier (see Equation 9.17). If U << E,
barrier penetration is exponentially suppressed. Using r ≈ λ and E = µv2/2,
we find

U

E
=

2Z1Z2e
2

vh
. (9.36)

Collecting all the factors, we can express σ as

σ(E) =
S(E)

E
e−b/

√
E , (9.37)

where
b = 23/2π2Z1Z2e

2√µ/h . (9.38)

The overall proportionality constant and the interaction strength between the
colliding nuclei, which depends on energy, have been absorbed in the factor
S(E). In most cases, it is a slowly varying function of energy. But in some
special cases, such as resonant scattering, it shows strong energy dependence.

9.5.3 Estimating the Nuclear Reaction Rate

Using Equation 9.37 we can express the reaction rate (see Equations 9.29 and
9.35) as

R12 =

(

2

kT

)3/2
N1N2√
µπ

∫ ∞

0

S(E) exp

(

− b√
E

− E

kT

)

dE . (9.39)

Here we have used E = µv2/2 and changed the variable of integration from

v to E. We plot the function, g(E) = exp
(

− b√
E
− E

kT

)

, in Figure 9.3. Let

us assume that S(E) ≈ 1. In that case the integral is simply the area under
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the curve shown in Figure 9.3. The Boltzmann factor e−E/kT falls rapidly

with energy, whereas the barrier penetration factor e−b/
√
E rises with energy.

At low energies, the penetration factor dominates. Hence g(E) rises with E.
Beyond a certain energy, the Boltzmann factor dominates and leads to decay
with E. The product of these two factors is very small for most values of E.
It peaks at

E0 =

(

bkT

2

)2/3

. (9.40)

This is called the Gamow peak. It is clear from Figure 9.3 that the dominant
contribution to R12 is obtained from the region in the neighborhood of the
Gamow peak. The contribution from the regions far removed from the peak
is very small. Hence we can evaluate the integral in the reaction rate R12

approximately by expanding the exponent around E = E0.
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FIGURE 9.3: The factor g(E) = exp
(

− b√
E
− E

kT

)

plotted as a function of

energy, E. Here the temperature has been set equal to 1.5×107K. The Gamow
peak occurs at energy E0 ≈ 5.9 KeV.

The integral is of the form

I =

∫ ∞

0

dES(E)e−f(E) , (9.41)

where

f(E) =
b√
E

+
E

kT
. (9.42)

Here S(E) is assumed to be a slowly varying function of E, and f(E) positive
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and much larger than unity. We expand f(E) around the neighborhood of its
extremal point,

df(E)

dE

∣

∣

∣

E=E0

= 0 ,

where E0 is given by Equation 9.40. Hence we have

f(E) = f(E0) +
(E − E0)

2

2

d2f

dE2
(E0) + ... . (9.43)

Keeping only the quadratic terms, the integral can be performed by setting
S(E) ≈ S(E0). We find

I = S(E0)e
−f(E0)

√

2π

f ′′(E0)
. (9.44)

For the first reaction of the PP1 chain, S(E0) ≈ 3.78× 10−22 KeV·barns.
There are several corrections to the above formula. Here we briefly discuss

two:

(1) In the case of resonant scattering, the factor S(E) also shows a strong
dependence on energy. Hence the integrand in Equation 9.39 is consid-
erably modified in this case.

(2) The medium is electrically neutral because besides protons and nuclei, it
also contains electrons. This partially screens the nuclear target. Hence
the repulsion due to Coulomb potential is somewhat reduced, leading to
an increased barrier penetration rate. This enhances the reaction rate.

So far we have obtained the reaction rate for an individual process involving
the collision of two particles designated 1 and 2. In practice we need to consider
a chain consisting of several processes. The rate at which the final products
of such a chain are produced is somewhat complicated because one has to
solve differential equations involving the reaction rates of all the individual
processes. Here we illustrate this calculation by considering the example of
the PP1 chain in some detail.

Let’s denote the number densities of hydrogen, deuteron, helium-3, and
helium-4 nuclei by NH , ND, NHe(3), and NHe(4), respectively. The reaction
rate for the pp collision, the first reaction in the PP1 chain, can be written as

R1 = λ1
N2

H

2
. (9.45)

The rate of formation of 3He through the second reaction in the PP1 chain
can be expressed as,

R2 = λ2NHND . (9.46)

The rate at which the concentration of deuteron changes with time is given
by

dND

dt
= R1 −R2 = λ1

N2
H

2
− λ2NHND . (9.47)
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The reaction strength λ2 is much larger than λ1. Let us assume that initially
ND = 0, which implies that R2 = 0. As deuteron is produced in the pp fusion
reaction, ND increases and the reaction rate R2 also starts increasing. At
some stage, R1 = R2 and the deuteron concentration reaches an equilibrium
value. Beyond this time, dND/dt = 0. This also gives us the equilibrium
concentration of deuteron by the following formula,

ND

NH
=

λ1
2λ2

. (9.48)

Because λ2 >> λ1, deuteron reaches its equilibrium concentration very quickly
during the life cycle of a star.

The final reaction in the PP1 chain, which involves fusion of two 3He
is relatively slow in comparison to the second reaction. This is due to the
larger Coulomb barrier. Hence it takes a much longer time for 3He to reach its
equilibrium value inside stellar cores. In fact, it may not be at its equilibrium
concentration at all stages of the lifetime of a star, even when it is on the
main sequence. The reaction rate for this process can be expressed as

R3 = λ3
N2

He(3)

2
. (9.49)

The rate at which the 3He concentration increases is given by

dNHe(3)

dt
= R2 − 2R3 = λ2NHND − 2λ3

N2
He(3)

2
. (9.50)

The extra factor of 2 multiplying R33 is due to the fact that two 3He nuclei
are consumed in each reaction. Here we will only consider the case when 3He
concentration has also reached its equilibrium value. In this case, dNHe(3)/dt =
0 and hence R2 = 2R3. This gives us the equilibrium concentration of 3He,

NHe(3)

NH
=

(

λ2
2λ3

)1/2

, (9.51)

where we have used Equations 9.50 and 9.48. Finally we calculate the rate at
which 4He is generated. This is given by

dNHe(4)

dt
= R3 =

R2

2
=
R1

2
. (9.52)

The rate R1 can be evaluated analytically by making an expansion around
the stationary point of f(E), as explained earlier in this section. Collecting
all the factors, we find

R1 =
N2

H

2

(

2

kT

)3/2
1√
µπ

S(E0)e
−f(E0)

√

2π

f ′′(E0)
. (9.53)
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9.6 Energy Released in Nuclear Reactions

We next determine the energy released in nuclear reactions taking the PP1
process as an example. The energy is released if the total mass of the final
products is less than the mass of the initial particles. The total energy pro-
duced is given by

∆E = ∆Mc2 , (9.54)

where ∆M =Mi−Mf , where Mi and Mf are the sum of masses of the initial
and final state particles, respectively. In estimating the energy released, we
should discount the energy carried away by the neutrinos produced because
these simply escape from the star. Here the particles under consideration are
bare nuclei with all their electrons stripped off. However, for the purpose
of estimating ∆M , it is more useful to use the masses of the corresponding
atoms. This is because the atomic masses are measured much more accurately
in comparison to the nuclear masses. The atomic mass differs from the nuclear
mass by the mass of the added electrons and the atomic binding energy. Let’s
ignore the atomic binding energies because these are very small compared to
the typical energy released in nuclear reactions. Then by replacing nuclear
masses by atomic masses, we would simply be adding the masses of equal
number of electrons to both the initial and final masses. Hence we would
only make a very tiny error, corresponding to the atomic binding energies, in
making this replacement.

The atomic masses are given in atomic mass units (a.m.u.), which sets the
mass of 12C atom exactly equal to 12. In MeV units, it is given by

1 a.m.u. = 931.478 MeV/c2 .

The masses of different elements in a.m.u. are very close to their mass numbers
A. Hence the atomic masses are often tabulated in the form of mass excess,
M.E.(A,Z), defined as

M.E.(A,Z) =M(A,Z)−A ,

where M(A,Z) is the mass of the atom with mass number A and atomic
number Z in atomic mass units. The tabulated values are often given by
converting M.E.(A,Z) into energy in MeV by multiplication with the factor
931.478. The mass excess for neutron, 1H, 2H, 3He, 4He are 8.07132, 7.28897,
13.13572, 14.93120, 2.42491, respectively, in MeV units.

We next estimate the energy released in the PP1 chain. The first two
reactions 1H+ 1H → 2H+ e+ + νe and 1H+ 2H → 3He+ γ essentially involve
the conversion 3 1H → 3He + e+ + νe + γ. Hence the energy released is equal
to ∆E1+∆E2 = 3M.E.(1, 1)−M.E.(3, 2) = 3× 7.28897− 14.93120 = 6.93571
MeV. Here we have denoted ∆E1 and ∆E2 as the energy released in the first
and second reaction, respectively. A relatively small fraction of this is carried
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away by neutrino. Here we will ignore this. The rate of energy generation in
these two reactions is equal to R1∆E1 + R2∆E2. In equilibrium, R1 = R2.
Hence the rate is simply equal to R1×6.93571 in units of MeV per unit volume
per unit time. The energy released in the final reaction in the PP1 chain is
equal to 2× 14.93120− (2.42491 + 2× 7.28897) = 12.86 MeV.
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FIGURE 9.4: The rate of energy generation, ǫPP1 in the PP1 chain, divided
by ρX2, as a function of T6 = T/106K.

We define ǫ as the rate of energy generation in units of energy per unit
mass per unit time. Hence ρǫ is the rate of energy generation in units of energy
per unit volume per unit time. Here ρ is the density of the medium. Therefore,
the total rate of energy generation in PP1 chain is

ρǫPP1 = R1 × 6.93571 +R3 × 12.86 = R1 × (13.37 MeV) , (9.55)

where ǫPP1 is the energy released per gram per second in the PPI reaction.
Using Equation 9.53 we can evaluate the energy generation rate as a function
of temperature. It is useful to eliminate the number density of hydrogen nuclei,
NH , in terms of its mass fraction, X. The mass density of hydrogen is clearly
ρNH . Hence the number density of hydrogen is

NH =
ρX

mH
, (9.56)

where mH is the mass of hydrogen nucleus. Because R1 ∝ N2
H , therefore

ρǫPP1 ∝ N2
H ∝ ρX2. This implies that

ǫPP1 ∝ ρX2 . (9.57)

Using Equation 9.53 and collecting all the factors, we find

ǫPP1 = 2.36× 106ρX2T
−2/3
6 exp(−33.8T

−1/3
6 ) , (9.58)
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in units of ergs/(g s). We plot this rate in Figure 9.4. Here T6 = T/(106K).
If we assume that PPII and PPIII chains are subdominant, this gives an
approximate formula for the energy generation rate, ǫPP , in the pp chain,
assuming equilibrium concentration of 3He.

In order to get a better idea about the dependence of ǫPP1 on tempera-
ture T , it is useful to express it as a power of T in the neighborhood of the
temperature of interest. Here we are interested in the temperature of the solar
core, which is around 1.5× 107K. Hence we express Equation 9.58 as

ǫPP ≈ ǫPP1 = ǫ0,ppρX
2Tα

6 . (9.59)

By making a Taylor expansion around T = 1.5×107K of both Equations 9.58
and 9.59 and equating the first two terms, we can determine ǫ0,pp and α. We
find

ǫPP ≈ ǫ0,ppρX
2T 3.90

6 , (9.60)

where ǫ0,pp = 1.12× 10−5 erg cm3/(g2 s).
We next briefly discuss the CNO cycle, which also contributes to the energy

production in the main sequence stars. In this case, the energy production rate
in the neighborhood of T = 1.5× 107K can be expressed as

ǫCNO ≈ ǫ0,CNOρXXCNOT
αCNO

6 , (9.61)

where αCNO ≈ 20. This is much larger than 3.9, the exponent found in the
case of ǫPP . Hence the rate of energy production rises very rapidly with tem-
perature. The core temperature increases with the mass of the star. Hence
for high mass stars, energy production is dominated by the CNO cycle. From
stellar model calculations, we find that for stars with massM < 1.3MSun, the
PP chain dominates, whereas the CNO cycle dominates for stars with mass
M > 1.3MSun.

During the main sequence phase, the energy production of a star is domi-
nated by processes that convert hydrogen to helium. Hence the helium abun-
dance in the core increases with time. The star evolves slowly during this
phase. The star undergoes a major change when the hydrogen abundance in
the core becomes negligible. At this point, the nuclear reaction rate becomes
very small and is unable to balance the gravitational attraction. The 4He
nucleus cannot undergo significant fusion reactions at this temperature. The
core shrinks rapidly, converting gravitational potential energy into thermal en-
ergy. Hence the temperature in the core increases and eventually it becomes
hot enough to start helium fusion. The details of this process will be discussed
later. Beyond this point the star settles into the red giant or supergiant phase.

The fusion process of helium nuclei also encounters a barrier, reminiscent
of the pp fusion. In this case, the problem arises due to unusual stability, that
is, high binding energy, of 4He in comparison to other nuclei with Z ≤ 5.
For example, the fusion of a helium nucleus with hydrogen to form lithium is
highly suppressed in stellar cores. This reaction is endothermic and its rate
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would be appreciable only at much higher temperatures. Helium fusion could
occur by the process

4He + 4He → 8Be ,

which converts two helium nuclei to a beryllium (8Be) nucleus. However, this
isotope of beryllium is unstable and quickly decays into two 4He nuclei. The
lifetime of 8Be is approximately 10−16 seconds. In order to form heavier ele-
ments, 8Be has to capture another 4He nucleus within this time interval. The
resulting nuclear reaction,

4He + 8Be → 12C ,

forms carbon. This process practically acts as the fusion of three helium nuclei
and is called the triple α process. Here α stands for the 4He nucleus. The rate
for this process is suppressed and is controlled by the lifetime of 8Be. Its rate
is appreciable only at much higher temperatures, found in the cores of giant
or supergiant stars. The energy production rate for the triple α process, in
the vicinity of temperature T = 108K, can be expressed as

ǫ3α ≈ ǫ0,3αρ
2Y 3T 40

8 , (9.62)

where T8 = T/108K and ǫ0,3α = 4.4×10−8 erg cm6/(g3 s). This is discussed in
detail in Principles of Stellar Evolution and Nucleosynthesis by D. D. Clayton.
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FIGURE 9.5: The binding energy B in MeV per nucleon for different nuclei.
Here we show only the most abundant nucleus for each atomic number. The
only exception is 2H and 3He, which are also shown.

The triple α process leads to the synthesis of carbon. At higher tempera-
tures, fusion of heavier elements such as carbon, nitrogen, oxygen occurs and
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leads to synthesis of elements such 20Ne, 23Na, 24Mg, 28Si etc. We can obtain a
qualitative understanding of the abundance of different nuclei by considering
their binding energies B, defined as

B = Z ×mp + (A− Z)×mn −MA , (9.63)

where mp, mn, and MA are the masses of proton, neutron, and nucleus, re-
spectively. The binding energy per nucleon (B/A) is plotted in Figure 9.5.
We find that B/A increases up to iron, 56Fe, and then starts to decrease.
Hence fusion reactions that produce iron as their final product produce en-
ergy. In contrast, fusion reactions which produce nuclei heavier than Iron are
endothermic, i.e. these consume energy. The latter reactions are not favored in
equilibrium conditions inside stellar interiors. They occur by neutron capture
processes at relatively high temperatures, often under special conditions such
as supernova explosions. The abundance of such elements is relatively small.
We also notice in Figure 9.5 that some nuclei such as 4He, 12C, and 16O have
relatively high binding energies in comparison to other nuclei of comparable
atomic numbers. These turn out to be the most abundant elements, besides
hydrogen, in the Universe.
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FIGURE 9.6: The mass and luminosity as a function of distance r from
the center. On the x-axis we plot the distance r relative to the solar radius
RS . The mass and luminosity are shown relative to the total mass MS and
luminosity LS of the Sun. (Data taken from Bahcall and Pinsonneault, Phys.
Rev. Lett. 92, 121301 (2004).)

A star is formed by the collapse of a cloud of gas and dust in the interstellar
medium. As the cloud collapses, its temperature increases. At some stage,
the temperature in its core may rise high enough to start nuclear reactions
that convert hydrogen to helium. At this point, the star becomes a main
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sequence star. The star leaves the main sequence once helium fusion starts.
Because hydrogen fusion is a relatively slow process, the star spends maximum
time on the main sequence. Hence we expect that the relative abundance of
stars on the main sequence would be higher in comparison to other phases.
This explains the main feature of the HR diagram, where it is found that
most stars lie on the main sequence. Within the main sequence, the lifetime
of a star decreases with an increase in its mass. The hydrogen fusion rate
is higher in stars with larger mass due to their higher core temperatures.
The lower limit on mass of a main sequence star is 0.08MSun. Stars with
mass smaller than this do not have sufficiently high temperatures to start
nuclear fusion. The upper limit is 90MSun. Stars with mass higher than this
are unstable. Numerical model calculations are able to well reproduce the
luminosity-temperature relationship of the main sequence stars.

9.7 Standard Solar Model
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FIGURE 9.7: The temperature as a function of r/RS . (Data taken from
Bahcall and Pinsonneault, Phys. Rev. Lett. 92, 121301 (2004).)

The stellar model equations can be used to deduce the internal properties of
stars. Here we provide details of the internal properties of the Sun obtained
by a numerical solution of these equations. In Figure 9.6 we show the mass
and luminosity of the Sun from the center to its surface. We find that the
luminosity reaches close to the surface luminosity at r ≈ 0.2RS , where RS

is the solar radius. This is expected because the nuclear reactions take place
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only in the core. In Figure 9.7 we show the temperature as a function of r. The
temperature decreases from 16 million K at the center to about 0.6 million
K at r = 0.9RS . In Figure 9.8, we show how the composition changes as
a function of the radius. Here we only show the variation of mass fractions
of hydrogen, X, and helium, Y , with radius. As expected, we find that the
fraction of helium is much higher in the thermonuclear core, about 0.65 near
the center, and decreases rapidly to about 0.3 at r = 0.2RS . At the surface,
the helium mass fraction is about 0.25. The energy transport inside the Sun
is dominated by radiation for r < 0.7RS . At larger r, convection dominates.
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FIGURE 9.8: The mass fractions X and Y of hydrogen, 1H, and helium,
4He, respectively as a function of r/RS . (Data taken from Bahcall and Pin-
sonneault, Phys. Rev. Lett. 92, 121301 (2004).)

Exercises

9.1 Which of the following reactions are allowed by the conservation laws:

e− + 1H → γ + γ ,

n→ 1H+ e− + νe ,

3He + 3He → 4He + 2H .

If a reaction is not allowed, state which conservation law is violated.
Note that here 1H refers to hydrogen nucleus, which is simply a proton.

9.2 Let ~v1 and ~v2 be the velocities of two particles of masses, m1 and m2,
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respectively. Show that, in terms of the relative velocity ~v and center of
mass velocity ~Vc, these can be expressed as

~v1 = ~Vc +
m2

m1 +m2
~v ,

~v2 = ~Vc −
m1

m1 +m2
~v . (9.64)

9.3 Starting from the basic formula for the kinetic energy of two particles,
Equation 9.19, derive Equation 9.22.

9.4 Express the distribution function, f(v), defined by Equation 9.32, in
terms of the distribution n1(v).

9.5 Verify that the Gamow peak position occurs at an energy given by Equa-
tion 9.40.

9.6 Make a Taylor expansion of ǫPP1 given in Equations 9.58 and 9.59
around T = 1.5 × 107K. Note that T = 1.5 × 107K implies T6 = 15.
Keep only terms up to first order in (T6 − 15). Equate the zeroth and
first-order terms of the two expansions and determine the parameters α
and ǫ0,pp.

9.7 Verify the formula, Equation 9.58 for ǫPP1. Proceed as follows: (a) De-
termine the formula for R1 by explicitly substituting the expressions for
f(E0) and f

′′(E0) in Equation 9.53. (b) Express the formula for ρǫPP1,
Equation 9.55, in units of ergs cm−3 sec−1. (c) Obtain the expression for
ǫPP1 by using the results of (a), (b) and Equation 9.56. (d) The value of
S(E0) is given by, S(E0) ≈ 3.78×10−22 KeV·barns Convert this into cgs
units. Note that 1 barn is equal to 10−24 cm2. (e) Numerically compute
the exponent and the coefficient in order to obtain Equation 9.58.

9.8 (a) Make a rough estimate of the total number of neutrinos emitted by
the Sun per second. Assume that only the PP1 chain contributes. By
comparing the solar luminosity with the energy emitted per reaction,
determine the total number of fusion reactions per second. Hence deter-
mine the neutrino emission rate. Compute also the solar neutrino flux at
Earth. (b) The neutrino-proton cross section for typical solar neutrino
energies is roughly 10−41 cm2. Assume that an experiment to detect so-
lar neutrinos uses a detector of mass 10,000 Kg. Make a rough estimate
of the number of protons in this detector. Using the solar neutrino flux,
determine the number of events, that is, neutrino-proton reactions, per
second for this detector.

9.9 Check that the Jacobian of the transformation between (~v1, ~v2) and

(~v, ~Vc) given in Equation 9.64 is unity. You only need to consider any
particular component, x, y, or z of these velocity vectors and show that
the corresponding Jacobian is unity.



Chapter 10

Star Formation and Stellar Evolution

10.1 Early Stage of Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.1.1 Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.2 Evolution on the Main Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
10.3 Degenerate Free Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.4 Evolution beyond the Main Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.5 Population I and II Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.6 White Dwarfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10.7 Neutron Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
10.8 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.9 Supernova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

The interstellar medium is filled with gas and dust. In some regions the density
of gas and dust is much higher than the mean value in the medium. Stars are
formed due to the collapse of such clouds or regions of high density. The
temperature of these clouds is normally quite small and hence they do not
emit any visible radiation. However, they are often illuminated by light due
to stars in their neighborhood. Such illuminated clouds are called nebula. Due
to their high density, they cause considerable extinction of star light. Hence
the density of stars appears much reduced in the direction of these clouds.

The gas in the interstellar medium is predominantly hydrogen and helium.
Hydrogen may be in the atomic, ionized, or molecular state and contributes
roughly 70% by mass. Helium is predominantly in the atomic state and ap-
proximately 28% by mass. The mean gas density is about 10% of the total
density of the Milky Way. This amounts to about 1 atom/cm3. Dust is com-
posed of complex molecules formed out of atoms such as carbon, oxygen,
nitrogen, silicon, and hydrogen. Its mean density is about 0.1% of the total
density of the galaxy. On an average, their number density is about 10−13

cm−3. The size of the dust particles is typically less than 1 µm.
We find several different types of clouds in the interstellar medium. We

observe diffuse hydrogen clouds, where hydrogen is found in its atomic state.
The temperature in these clouds ranges from 30K to 80K. The number density
lies in the range 100 to 800 cm−3, and their total mass is on the order of 1
to 100 MSun. Due to their low temperature, hydrogen is found in its ground
state. We also observe molecular hydrogen clouds. These are regions of high
density of molecular hydrogen and dust. Molecular hydrogen would normally
be broken down by star light. However, these clouds are shielded by regions of
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high-density atomic hydrogen and dust. These cause considerable extinction
of star light and hence allow molecular hydrogen to exist. We observe many
enormous complexes of dust and gas, called Giant Molecular Clouds (GMCs).
These have temperature, T ≈ 20K, mean density n ≈ 100 to 300 cm−3, mass
M ≈ 106 MSun, and size about 50 pc. The cores of these clouds have much
higher densities, n ≈ 107 to 109 cm−3, and slightly higher temperatures T ≈
100 to 200K. Their mass and size are on the order of 10 to 1000MSun and 0.05
to 1 pc, respectively. These are the sites of active star formation. Many such
clouds are found in the Milky Way. They exist predominantly in the spiral
arms.

10.1 Early Stage of Star Formation

During the initial stage of star formation, a compact object called a protostar
is formed. This is the stage before the nuclear reactions start. A molecular
cloud will collapse if it is gravitationally unstable. We can formulate the con-
dition for collapse by considering the virial theorem, Equation 5.23. In equi-
librium, 2K +U = 0, where K is the total kinetic energy and U the potential
energy. If 2K > |U |, then the gas pressure dominates over the gravitational
attraction and the cloud expands. On the other hand, if 2K < |U |, then the
cloud is unstable to collapse. Normally a cloud remains in equilibrium until
some trigger, such as a nearby supernova explosion, makes it unstable to col-
lapse. Consider a uniform spherical cloud of radius R and density ρ0. Its mass
M = 4πR3ρ0/3 and its gravitational potential energy (see Exercise 8.5)

U = −3

5

GM2

R
. (10.1)

We assume that the cloud has the same temperature T throughout, and hence
its total kinetic energy K is given by

K =
3

2
NkT , (10.2)

where N =M/(µmH) is the total number of particles and µ the mean molec-
ular weight. The condition for collapse, 2K < |U |, implies that

3NkT <
3

5

GM2

R
.

We, therefore, find the condition

M > MJ (10.3)
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for collapse, where MJ is the Jean’s mass,

MJ =

(

3

4π

)1/2(
5k

GmH

)3/2(
T 3

µ3ρ0

)1/2

. (10.4)

This formula should be treated as an order of magnitude estimate due to our
assumption that the density of the cloud is uniform.

We next apply the Jean’s criteria, Equation 10.3, to the cores of the Giant
Molecular Clouds. Using T = 100K, n ∼ 108 cm−3 or ρ0 ∼ 10−16 g/cm3, we
find MJ ∼ 10 MSun. Hence, the observed masses of these cores, of order 10 to
1,000 MSun, satisfy the criteria for collapse. In contrast, one can check that
the atomic hydrogen clouds do not satisfy the Jean’s criteria.

These clouds usually stay in equilibrium until a trigger starts their col-
lapse. The trigger may be some disturbance such as a supernova explosion in
their neighborhood which sends out a shock wave into the interstellar medium
compressing the gas with which it comes in contact. During the initial stages,
the cloud is nearly in free-fall under gravitational attraction, with the pres-
sure gradient being almost negligible. The cloud has sufficiently low density
that heat is efficiently radiated out. Hence its temperature does not change
substantially during collapse and remains the same throughout the medium.
The collapse at this stage is isothermal. One can solve Newton’s equation of
motion to determine the typical time scale of collapse. One finds the time
scale for free-fall collapse,

tff ≈
(

1

Gρ0

)1/2

. (10.5)

Using ρ0 ∼ 10−16 g/cm3 we find tff ∼ 5, 000 years. Hence we find that this
time scale is very short compared to both the thermal time scale tth and the
time scale for evolution of a star driven by nuclear fusion.

As the cloud contracts, its density increases. In time, its core becomes
sufficiently dense so that the heat generated due to the release of gravitational
potential energy does not get radiated away efficiently. The temperature of
the core starts to increase. The pressure gradient can no longer be neglected
and the core contracts at a slower rate. The surrounding medium, however,
is still in free-fall. The central object is called a protostar. For a cloud of
mass MSun, this region would have a size on the order of a few AU. The
temperature of this object is such that it radiates at infrared frequencies. The
energy transport occurs dominantly by convection. This object is surrounded
by dense molecular clouds. Hence observational evidence for such an object
is the existence of small IR sources embedded within molecular clouds. Their
detection is difficult because these objects are very short lived due to the
smallness of the free-fall time scale.

The free-fall phase eventually stops and the cloud achieves hydrostatic
equilibrium. At this point, this object is located on the HR diagram at the
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extreme right-hand side on a line called the Hayashi track. An object cannot
be in hydrostatic equilibrium toward the right of this track. Toward the left,
hydrostatic equilibrium can be maintained. At the Hayashi track, the star is
fully convective. After reaching this track, the star contracts quasi-statically on
the thermal time scale with the pressure gradient balancing the gravitational
attraction. A star of mass equal to MSun spends about 107 years and a star
of mass 15 MSun spends about 60,000 years in this phase. Once the core
temperature gets sufficiently high, fusion reactions start. Initially these give
subdominant contribution to the total energy released by the star. The star
reaches main sequence once the fusion reactions start dominating the total
energy production.

10.1.1 Fragmentation

Stars often form in clusters. This is due to the fact that as the cloud collapses,
it undergoes fragmentation, wherein the different fragments collapse indepen-
dently to form stars. The fragmentation occurs because the original cloud is
not exactly homogeneous. It has some regions of higher density. The Jean’s

mass MJ is proportional to 1/ρ
1/2
0 . Hence, as the collapse proceeds, some of

these regions may themselves satisfy the Jean’s criteria due to their higher
density. During the initial stages of collapse, the temperature of a cloud does
not change. However, its density increases. Hence in time, some dense regions
might themselves become unstable to collapse and start contracting indepen-
dently of the original cloud, leading to fragmentation. This region may undergo
further fragmentation due to its inhomogeneous density distribution. The pro-
cess of fragmentation would continue until our assumption that the collapse
is isothermal breaks down. At this point, the cloud becomes very dense and
the gravitational potential energy released cannot be efficiently transported
out. The temperature starts to rise and the process of fragmentation stops.

The large O, B type stars form first. When these stars reach the main
sequence, their UV radiation raises the temperature of the medium. This in-
hibits further star formation. Furthermore, their radiation pressure drives out
the outer layer of the cloud. This may disperse the remaining cloud. Due to
the increase in temperature and reduction in cloud size, stars that were grav-
itationally bound earlier may no longer remain bound and may start to drift
apart. Young clusters dominated by O, B stars are called OB associations.
The newborn stars are revealed once the medium becomes sufficiently trans-
parent. Planets form in the medium surrounding a star during its early stages
of formation due to condensation of gas and dust. Observational examples
of pre-main sequence stars are the T Tauri stars. These objects represent a
transition from the infrared sources that are surrounded by dense clouds of
dust and gas and the main sequence stars. The young stars also emit jets.
When these jets meet the interstellar medium, they produce bright star-like
nebula called Herbig–Haro objects.
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10.2 Evolution on the Main Sequence

A star reaches the main sequence once nuclear fusion starts dominating its
energy production. During this stage the energy of the star is generated by
fusion processes that convert hydrogen into helium. A star spends maximum
time in this phase. This explains why most of the stars lie along the main
sequence on the HR diagram. For the lower main sequence, which corresponds
to mass M < 1.3MSun, the PP chain dominates. Here the energy transport
in the core is dominated by radiation. Convection dominates in the outer
regions. As the star evolves on the main sequence, hydrogen in the core gets
depleted. Eventually the medium near the center gets converted entirely into
helium and fusion reactions stop. However, hydrogen fusion continues in the
surrounding shell, as shown in Figure 10.1.

He

H     He

FIGURE 10.1: The fate of a low mass star toward the end of the main
sequence. The core becomes predominantly helium, and hydrogen fusion con-
tinues in the shell surrounding the core.

The lower limit of the mass of a star is 0.08 MSun. If the mass of an
object is below this limit, it does not get hot enough to start nuclear fusion.
Stars with masses between 0.08 MSun and 0.26 MSun are fully convective
on the main sequence. Hence the medium gets completely mixed up and all
the hydrogen is eventually converted into helium. Such a star does not get hot
enough to start helium fusion. The fusion reactions stop beyond this stage, the
star begins to contract and becomes a white dwarf at the end of its life cycle.
A white dwarf is a compact star with very high density. A white dwarf with
mass equal to MSun has a radius close to the Earth’s radius. Its pressure is
dominated by degenerate free electron gas. This means that the density of free
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electrons is so high that all their quantum mechanical energy levels are filled
up. The pressure exerted by this gas is sufficient to balance the gravitational
attraction. We discuss this further in Section 10.3.

The energy production of stars in the lower main sequence,M < 1.3MSun,
is dominated by the PP chain. Excluding the very low mass stars, M <
0.26 MSun, these stars have a radiative core. Convective transport dominates
in the outer regions. In the upper main sequence, M > 1.3 MSun, the CNO
cycle dominates. In this case, the rate of energy production has a strong
dependence on temperature. Because the temperature decreases with distance,
r, from the center, the energy production rate also has a strong dependence on
r. Hence the outward flux of energy is very large, and can be maintained only
by convection. The core of upper main sequence stars is, therefore, convective.

For stars with mass, M > 0.26 MSun, the fusion reactions stop inside
the core after all the hydrogen is converted to helium. The hydrogen burning
continues inside an envelope surrounding the core. The helium core continues
to expand as more and more helium is produced. Once the helium core is
sufficiently large, it becomes unstable to collapse. The mean molecular weight
µ of helium is larger than hydrogen. Because the Jean’s mass decreases with
an increase in µ, MJ ∝ 1/µ3/2, a helium core of smaller mass in comparison
to the hydrogen core may be unstable to collapse. As the core contracts, its
temperature increases. Eventually the temperature becomes sufficiently large
to start helium fusion. The extra energy produced pushes out the envelope
surrounding the core. The star approaches the giant or supergiant phase,
depending on its mass. Its luminosity increases but its surface temperature
goes down.

The evolution of a star beyond the main sequence depends strongly on
whether or not the core acquires electron degeneracy. Hence we next study
this phenomenon in more detail.

10.3 Degenerate Free Electron Gas

We consider a gas of free electrons in volume V . As explained in section 6.5,
electrons are fermions and hence only one electron can occupy any particular
quantum state. At low temperatures their distribution function is similar to
the T = 0 distribution function plotted in Figure 6.8. Hence, in this case, all
the available quantum states or energy levels up to some maximum energy ǫf ,
called the Fermi energy, are filled. Such a gas is called degenerate. The Fermi
energy ǫf is equal to the chemical potential µ, defined in Equation 6.11, in this
case. The maximum momentum pf corresponding to this maximum energy is
called the Fermi momentum. The number of states in the momentum interval
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p to p+ dp was derived in Chapter 6 (see Equation 6.32). It is given by

dN = 2
4πV p2dp

h3
, (10.6)

where the factor 2 is due to the two spin states of an electron. The total
number of states with p < pf is

N =

∫ pf

0

2
4πV p2dp

h3
=

8πV p3f
3h3

. (10.7)

At high temperature, the states are sparsely filled. There are several states
available with momentum in the neighborhood of a given state. If we heat this
system, then the electrons can freely make transitions into states with momen-
tum (and energy) close to the electron’s momentum. This is not possible for a
degenerate gas. Electrons cannot freely jump from one state to another. This
also implies that electrons are not able to undergo scatterings since a scat-
tered electron would necessarily have a different momentum in comparison to
the incident electron. Hence it must occupy a different quantum state. This
makes the degenerate matter highly conducting.

We next obtain the equation of state for the degenerate gas. Since all the
states up to the Fermi momentum are filled up, the number density (ne) of
free electrons in such a system is given by ne = N/V . The Fermi momentum
is given by

p3f =
3neh

3

8π
. (10.8)

For a nonrelativistic gas, the kinetic energy of an electron with momentum p
is

K =
p2

2me
, (10.9)

where me is the electron mass. Hence the total energy of the gas is

E =

∫

KdN =

∫ pf

0

4πV p4dp

meh3
=

4πV p5f
5meh3

. (10.10)

The pressure P can be computed by using Eq. 8.43. We obtain

P =
2

3

E

V
=

1

20

(

3

π

)2/3
h2

me
n5/3e , (10.11)

where we have used Equation 10.8. This is the equation of state of a degenerate
free electron gas. It is valid as long as the temperature of the electron gas is
sufficiently small so that we can assume that it is degenerate. In a white
dwarf, the gravitational attraction is balanced by the pressure of a degenerate
electron gas, given by this equation.



196 An Introduction to Astronomy and Astrophysics

10.4 Evolution beyond the Main Sequence

A star of mass less than 0.26 MSun becomes a white dwarf at the end of the
main sequence phase. If the mass of a star is greater than 0.26 MSun, helium
burning starts in the core. The star becomes a red giant or a supergiant. If the
mass of a star lies between 0.26 MSun and 2 MSun, the helium fusion starts
explosively. For higher mass stars, it starts non-explosively. This explosion is
called a helium flash.

The explosion occurs because the fusion starts when the core is degenerate.
In this situation the gravitational attraction is balanced by the pressure of the
degenerate electron gas. The nuclear fusion reactions generate heat, leading
to an increase in temperature. However the pressure does not change much as
long as the temperature is sufficiently small so that degeneracy is maintained
to a good approximation. Hence, in contrast to the non-degenerate matter, the
core is unable to expand with increasing temperature. Meanwhile the nuclei
get heated up. The reaction rate of helium fusion, that is, the triple α process,
is very sensitive to temperature. Hence an increase in temperature leads to a
rapid increase in the energy production rate. This leads to a further increase
in temperature and triggers a runaway nuclear fusion reaction. Another im-
portant aspect of the phenomenon is that the conductivity of a degenerate
electron gas is very high. Hence the temperature in this medium is uniform
and the fusion process starts in the entire core almost at the same time. At
sufficiently high temperature, the degeneracy is lifted and the core expands
explosively. This is called a helium flash. The outer envelope is pushed out
and the star settles into the red giant phase. Despite the explosion in the core,
it does not lead to an overall disruption of the star.

C

He     

H       

FIGURE 10.2: The fate of a star with mass less than 15MSun during its
late stages in the giant phase. The core becomes predominantly carbon with
helium and hydrogen fusion occurring in shells surrounding the core.
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If the mass of a star is less than 3MSun, the core never gets hot enough to
burn carbon. As carbon accumulates in the core, helium and hydrogen fusion
takes place in the surrounding shells, as shown in Figure 10.2. Once the carbon
core gets big enough, it becomes unstable to collapse. The collapse produces
energy, which expels the outer envelope into the interstellar medium, forming,
what is called a planetary nebula. We point out that, despite the name, this
has nothing to do with planets. The core of this system forms a white dwarf.

Fe

Si     

O        

C

He

H

FIGURE 10.3: The fate of a star with mass greater than 15MSun during
its late stages in the giant phase. The core becomes predominantly iron with
elements of lower atomic weight burning in shells surrounding the core.

In the case of stars of mass larger than 3MSun, the nuclear reactions
proceed beyond helium fusion. The temperature in the core gets sufficiently
high to burn carbon and heavier elements. If the mass lies in the range
3MSun < M < 15MSun, the core eventually becomes degenerate. Its mass
is dominated by carbon at the lower end of this mass range and by oxygen
at the upper end. Hence, in analogy with a helium flash, the fusion of carbon
(or oxygen) starts explosively. This is a very intense process and probably
destroys the entire star in a supernova explosion.

If the mass of a star is greater than 15MSun, the carbon fusion in the
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core starts when it is nondegenerate. Hence the process is nonexplosive. In
this case, all the allowed fusion reactions take place, eventually forming iron
in the core. During its final stages, the star has an iron core, with silicon,
oxygen, carbon, helium, and hydrogen fusion occurring in shells, as shown in
Figure 10.3. Fusion reactions cannot occur in equilibrium in the iron core. As
its mass becomes sufficiently large, it becomes unstable to collapse. During
the collapse, the gravitational energy released breaks down iron into lighter
nuclei, which further break down, eventually forming protons and neutrons.
This collapse occurs very rapidly, within a fraction of a second. The outer layer
explodes as a supernova. The core collapse eventually stops when it reaches
neutron degeneracy. In this case, the free neutron gas becomes degenerate.
The star becomes a neutron star. If the mass of the star is sufficiently large,
even the neutron degeneracy pressure is not enough to stop the collapse. The
star becomes a black hole.

The upper limit on the mass of a white dwarf is

Mwd < 1.44MSun . (10.12)

This is called the Chandrasekhar limit. If the mass of a star is larger than this,
then the electron degeneracy pressure is not enough to stop its collapse. The
star becomes a neutron star. Similarly there is a limiting mass of the neutron
star. Beyond this mass, the star becomes a black hole.

10.5 Population I and II Stars

The Big Bang model of the Universe proposes that the Universe originated at
some time and has been expanding since then. In very early times, it was very
hot and filled with plasma composed of photons, electrons, protons, neutrons,
and neutrinos. Due to very high temperatures, neither nuclei nor atoms could
exist at that time. As it cooled, a few light nuclei, predominantly helium,
formed. As it cooled further, hydrogen and helium atoms formed. Eventually,
galaxies and galaxy clusters formed. Hence the first stars in the Universe
formed out of material that was predominantly hydrogen and helium. The
percentage of other elements was negligible. These stars are called population
II stars. These are the oldest stars in the Universe. Within the Milky Way,
they are found in globular clusters, which populate the galactic halo. These
clusters probably formed at the same time as the formation of the Milky Way.
The surface composition of population II stars is predominantly hydrogen and
helium. In the interior, of course, heavier elements are present due to fusion.

As the Universe evolves, some of the population II stars end their life in a
supernova explosion, which replenishes the interstellar medium with metals,
that is, elements with atomic number Z > 2. Hence the next and subsequent
generation of stars is formed in a medium that is much richer in metals. These
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are called population I stars. For example, the Sun is a population I star.
These have a much larger abundance of metals on their surface in comparison
with population II stars. They are found predominantly in the disks of spiral
galaxies, in particular the spiral arms, and are generally younger, brighter, and
hotter in comparison with population II stars. Because a higher mass star has
a smaller lifetime, we expect that population II stars, in general, have lower
masses in comparison with population I stars. The higher mass population II
stars would have reached the end of their life cycle by the current time.

10.6 White Dwarfs

White dwarfs are compact stars formed at the end of the life cycle of a star
of mass less than 3 solar masses. Recall that if the mass of a star lies between
0.08MSun and 0.26MSun, then it never gets sufficiently hot to start helium
fusion. Such stars become white dwarfs after exhausting their hydrogen fuel.
These stars are predominantly composed of helium. In the case of higher mass
stars, 0.26MSun < M < 3MSun, fusion processes convert helium to carbon in
the core. The core never gets hot enough to burn carbon and starts contracting
once it becomes sufficiently large. The outer layers of the star form a planetary
nebula while the core becomes a white dwarf. In this case, the white dwarf
consists predominantly of carbon. If the mass of a star lies between 3MSun

and 15MSun, then the carbon or oxygen burning in the core starts explosively.
In this case, the star may be completely destroyed in a supernova explosion.
However if such a star loses a sufficient amount of mass during its life cycle,
then it is possible that it may leave behind a remnant white dwarf composed
predominantly of carbon and oxygen.

White dwarfs are supported by the electron degeneracy pressure, given by
Equation 10.11, and hence are very dense. The radius of a white dwarf of mass
equal to 1 solar mass is of the order of the Earth’s radius. Hence a white dwarf
is about a million times denser than the Sun and about 300,000 times denser
than Earth. There is an upper limit on the mass of a white dwarf, which is
given by Equation 10.12. No white dwarf has been observed that violates this
limit.

By using the equation of hydrostatic equilibrium, we find that the mass of
a white dwarf is inversely proportional to its volume,

Mwd ∝ 1

Vwd
. (10.13)

Hence in contrast to the main sequence and giant stars, a white dwarf of larger
mass has a smaller radius. A white dwarf has no source of energy. It has no
nuclear reactions. It also does not undergo contraction and hence does not
release gravitational potential energy. Initially its temperature is relatively
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high. It slowly cools off by radiating away its thermal energy. Its luminosity
decreases and it slowly fades away.

White dwarfs have very low luminosity compared to the main sequence
stars. This is due to their very small size. Hence they are difficult to observe.
An example of a white dwarf star is Sirius B, which is a binary partner of the
bright star Sirius A. Another interesting example of a white dwarf is shown
in Figure 10.4.

FIGURE 10.4: The Southern Ring Nebula is a planetary nebula illuminated
by star light. The white dwarf associated with the planetary nebula is the faint
star next to the bright star at the center of the nebula. (Image courtesy of
NASA.)

10.7 Neutron Star

If the mass of a compact star is larger than the Chandrasekhar limit, then the
electron degeneracy pressure is unable to stop its collapse. The star continues
to collapse until the neutron gas in the star becomes degenerate. The gravita-
tional attraction is balanced by the neutron degeneracy pressure. The stable
object thus formed is called a neutron star. The formation of a neutron star is
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always accompanied by a supernova explosion. The medium of a neutron star
consists predominantly of neutrons. An important process that leads to high
density of neutrons is the URCA process. Consider a nucleus X with atomic
number Z and atomic mass A. Under normal circumstances it will undergo
the following processes:

ZX+ e− → Z−1Y+ νe ,
Z−1Y → ZX+ e− + ν̄e . (10.14)

However, if the free electrons are degenerate, then the second process is sup-
pressed. In a degenerate gas, all states up to the Fermi energy are filled. Hence
the final state electron has no available energy level, thus leading to suppres-
sion. The first reaction in Equation 10.14 leads to a reduction in the atomic
number of a nucleus. Hence the ratio of neutrons to protons in the final state
nuclei becomes larger. Once this ratio becomes sufficiently large, the binding
energy of nuclei starts to decrease. At this stage, neutrons start leaking out
of the nuclei. These processes slowly convert all nuclei into neutrons. Eventu-
ally, the medium becomes very rich in neutrons, with only a small fraction of
electrons and protons.

Magnetic Dipole

Axis

Rotation Axis

FIGURE 10.5: An illustration of a pulsar. The magnetic field axis is aligned
at an angle to the rotation axis. Relativistic charged particles escape the
pulsar spiraling along the magnetic field, emitting synchrotron radiation. The
radiation is emitted in a cone centered on the magnetic field axis. The cone
sweeps across the sky as the pulsar rotates. A detector receives radiation only
for short time intervals when the emitted radiation is directed toward it.
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Neutron stars are very compact objects. A 1 solar mass neutron star has
a radius on the order of 10 Km. Its density is of order 1018 Kg/m3. Observa-
tionally, neutron stars are identified with pulsars. The radiation from a pulsar
is received in periodic pulses. The period of these pulses is observed to lie
between a millisecond and a second. The period is found to be very precise
after averaging over a series of pulses. Pulsars emit radiation predominantly
in radio waves and x-rays. Their radiation at visible frequencies is observed
to be very small.

The pulsed radiation is caused by rotation of the pulsar. Let’s assume that
the large-scale magnetic field of a pulsar is aligned at an angle to its rotation
axis, as shown in Figure 10.5. As the pulsar rotates, it drags the magnetic
field with itself. Relativistic charged particles emerge from pulsars spiraling
along the magnetic field lines. As these particles accelerate in the magnetic
field, they emit synchrotron radiation in a cone. This radiation appears as a
pulse to an observer in its path. The period of the pulse is equal to the period
of rotation of the pulsar.

10.8 Black Holes

If the compact star has sufficiently high mass, then even the neutron degen-
eracy pressure is unable to stop its collapse. The star eventually becomes a
black hole. A black hole is a singularity in space-time and can be described
only within the framework of the general theory of relativity. Let’s assume
a spherically symmetric mass distribution centered at the origin O. Let its
total mass M be localized over a very small radius r. An object very far away
from O will experience the gravitational force due to this object, roughly in
accordance with what is implied by the Newton’s law of gravitation. Hence it
will not notice anything extraordinary. However, an object that falls within a
radius

R =
2GM

c2
≈ 2.95

[

M

MSun

]

Km (10.15)

will notice something unusual. It will be pulled toward this object and will
not be able to escape its gravitational pull, no matter how hard it tries. This
surface, beyond which nothing can escape, is called the event horizon. The
radius R is called the Schwarzschild radius. We emphasize that nothing, not
even light, can escape once it has entered the event horizon. As indicated in
Equation 10.15, for a solar mass object, the Schwarzschild radius is about 2.95
Km.



Star Formation and Stellar Evolution 203

FIGURE 10.6: An illustration of an accretion disk in a binary star system.
Mass flows from the tear-shaped star at left to the one at right, where it
forms an accretion disk. This process is discussed in more detail in Chapter
13. (Image courtesy of ST ScI, NASA.)

An object acts as a black hole only if its mass is concentrated in a radius
less than the Schwarzschild radius. If an observer is very far away from a
black hole, then it will not experience anything unusual. The gravitational
attraction of a black hole at large distances is similar to that of any spherically
symmetric object and can be described reliably by Newton’s law of gravitation.
However, at small distances, one has to use the general theory of relativity to
properly describe a black hole. The nature of space-time changes completely
in the vicinity of a black hole. Nevertheless, we get some understanding of
the physics of black holes even by using Newtonian mechanics. Let’s assume
a spherical symmetric object of mass M . By the special theory of relativity,
the maximum speed that any particle can attain is the velocity of light. Let’s
compute the radius at which the escape velocity becomes equal to the speed
of light. This is found to be equal to the Schwarzschild radius. Hence we again
get the result that nothing can escape from the Schwarzschild radius because
the escape velocity at this surface approaches the maximum speed attainable
by any particle. We hasten to add that this calculation should be taken with
caution, as here we have used Newtonian mechanics, which do not have any
concept of limiting velocity. This concept arises only when we use the special
theory of relativity.



204 An Introduction to Astronomy and Astrophysics

A black hole does not emit any radiation. Hence it is not possible to observe
an isolated black hole. We can only observe it indirectly if it is gravitationally
bound to other objects. For example, we can deduce the presence of a black
hole in a binary system through the radiation emitted by its accretion disk.
If a black hole is part of a binary star system, then it captures or accretes
material from its binary partner. The matter falling on the black hole forms
a disk-like structure called the accretion disk. This is shown schematically in
Figure 10.6. As more matter falls on the black hole, it passes through the
accretion disk and dissipates energy. This heats up the accretion disk, which
then emits radiation at x-ray frequencies.

10.9 Supernova

At the end stage of its evolution, a star with sufficiently high mass explodes
as a supernova. The luminosity of the star increases many fold, by as much
as 100 million times within a few days. After reaching its peak value, the
luminosity declines slowly over a long time interval. The outer shell is expelled
into interstellar space at a very high velocity. The velocity may exceed the
sound speed in the medium and hence this process produces a shock wave.
The resulting remnant of the explosion is visible as a nebula.

Supernovas are classified into two types, Type I and II, depending on the
shape of their light curves, that is, the variation in their intensity with time,
and the observed spectral lines. Supernova type II arise due to the explosion
of an isolated star whose mass is much larger than the mass of the Sun. The
supernova type I arises due to collapse of a star in a binary system. In this
case the mass of the star may be comparable to the solar mass.

Theoretically, we expect that there should be roughly one supernova ex-
plosion every 20 years in the Milky Way. However, it is not possible to observe
all of these events because most of them occur close to the galactic center and
are hidden from our view by clouds of gas and dust. The last major super-
nova observed at Earth occurred in 1987 and is called SN1987A. It occurred
in a small, nearby galaxy called the Large Magellanic Cloud, LMC. It was a
supernova of type II. The brightest recorded supernova event so far occurred
in 1006 and is called SN1006. The exploding star was observable during the
day for some time. The star appeared three times the size of Venus and had
an intensity comparable to the Moon. Another interesting supernova explo-
sion was SN1054. This was also observable during day time. It is possible to
identify the remnant of this supernova as the Crab Nebula.

In the case of an isolated star of mass greater than 15MSun, the supernova
explosion arises due to the collapse of the iron core. The collapse occurs very
rapidly, within a few seconds. This process releases a lot of energy in the
form of radiation and neutrinos. The neutrinos immediately escape from the
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dense medium surrounding the core. Hence the first observable signal of a
supernova explosion is a burst of neutrinos. The radiation produced during
this process actually gets trapped and is released later, after a few hours.
The outer envelope is thrown into interstellar space at velocities exceeding
the sound velocity in the medium, producing shock waves. An image of the
supernova remnant, such as the Crab Nebula, shows filamentary structure,
which is evidence for these shock waves. There is also direct evidence for
expansion of this nebula, that is, it has been possible to observe the increase
in its size with time. The supernova shock waves are also believed to be sites
where charged particles, observable on Earth as cosmic rays, are accelerated
to ultra-high energies.

Exercises

10.1 The Jean’s criteria can also be formulated in terms of the radius of a
cloud. Consider a uniform cloud of density ρ0, temperature T , and mean
molecular weight µ. Show that it is unstable to collapse if,

R > RJ , (10.16)

where RJ is the Jean’s radius,

RJ =

(

15kT

4πGmHµρ0

)1/2

. (10.17)

10.2 Verify the formula in Equation 10.5 for the time scale of free-fall col-
lapse. Assume a cloud of initial density ρ0 and radius R. Consider a
test particle at its surface and determine its acceleration. Find the time
it takes to reach the center, assuming that it is initially at rest and
its acceleration constant. The latter assumption is justified because we
are only interested in an order of magnitude estimate. Ignore numerical
factors of order unity in the final formula.

10.3 Determine the Jean’s mass for a Giant Molecular Cloud that has T =
100K and n = 108 cm−3. Repeat this exercise for an atomic hydrogen
cloud that has T = 30K and n = 800 cm−3. Verify that this does not
satisfy the criteria for collapse.

10.4 The Crab nebula is located at a distance of 2.0 ± 0.5 Kpc and has a
mean angular diameter of roughly 5 arc minutes. Its angular diame-
ter is increasing at the rate of approximately 1.6 arc seconds every 10
years. Determine the diameter of the nebula and the rate at which it is
increasing.

10.5 Using Newtonian mechanics, determine the escape velocity of a particle
located at the Schwarzschild radius. Verify that it is equal to the speed
of light.
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10.6 Verify Equation 10.13, which states that the white dwarf mass is in-
versely proportional to its volume. Start by using Equation 8.7. Let P
be the mean pressure over the entire star. Hence argue that

∣

∣

∣

∣

∣

∆P

∆r

∣

∣

∣

∣

∣

≈ P

R
≈ GMM

R2V
, (10.18)

where we have set ρ approximately equal to the mean density M/V .
Next, notice that in Equation 10.11, ne = np, where np is the number
density of protons. The mass of a star is predominantly provided by
protons and neutrons. Hence up to a factor of order unity,M ∼ npV mp.
This implies that ne ∝M/V . Use Equation 10.11 and the above equation
for P/R to establish Equation 10.13.

10.7 The Chandrasekhar limit on the mass of a white dwarf arises because
the speed of the electrons becomes close to the speed of light once the
mass of a white dwarf approaches this limit. You can verify this by using
the rough estimate of pressure given in Equation 10.18. Eliminate the
volume, V , in terms of the mass by using M = ρV and ρ ≈ 2mpne. The
formula for ρ follows because ne = np, and it is reasonable to assume
that np = nn. Here np and nn are the number densities of protons and
neutrons, respectively. Next, eliminate P in terms of ne using Equation
10.11. Finally compute the momentum and velocity of an electron using
Equation 10.8. Compare with the speed of light for M equal to the
limiting value.
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The Sun is an average, middle-aged, main sequence star belonging to the
spectral class G2. Like all other stars, it is composed of hot gas consisting
predominantly of hydrogen and helium. It does not have any solid surface. The
observed surface simply corresponds to the diffuse spherical region from where
we receive the solar radiation. Due to its vicinity, we know a lot more about
the Sun in comparison with all other stars. We have detailed observations
in a wide range of frequencies, such as radio, infrared, visible, ultraviolet,
and x-rays. Furthermore, we are also able to study the pressure (or sound)
waves propagating in the solar interior. These produce oscillations in the solar
surface that lead to Doppler shifts in the absorption spectral lines in the
solar radiation. By measuring these Doppler shifts, astronomers can deduce
the nature of the pressure waves in the solar interior. This phenomenon is
similar to the seismic waves in Earth’s interior and hence its study is called
helioseismology. These observations provide a wealth of information about
the Sun’s interior. Besides these, we can also study neutrinos from Sun, which
originate in the solar core due to nuclear reactions. These neutrinos provide
direct information about the fusion reactions occurring in the core.

The Sun rotates about its axis and has a magnetic field. It does not,
however, rotate as a rigid body. The speed of rotation is higher near the
equator in comparison to the poles. Helioseismology has revealed that the
angular speed also depends on the distance from the center. The latitude
dependence of angular speed has a profound effect on the solar magnetic field,
which varies over a 22-year cycle. This phenomenon is also correlated with the
variation of Sun spots.

The surface temperature of the Sun is approximately 5,778K. It is a pop-
ulation I star, that is, it has a rich metal content, and was formed about
4.6 billion years ago. The solar spectrum, as seen on top of the atmosphere,
is shown in Figure 6.3. The flux is dominant at visible frequencies. The so-

207
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lar flux density received at Earth is called the solar constant. It is equal to
1,360 W/m2. The interior properties of the Sun can be deduced theoretically
by solving the stellar model equations. The results of this study, called the
Standard Solar Model, are discussed in Section 9.7.

11.1 Solar Atmosphere

The density of the Sun becomes very small beyond a certain radius. The region
beyond this radius may be called the atmosphere, although, in contrast to
Earth, there is no sharp boundary that marks the base of the atmosphere.
The solar atmosphere is broadly divided into the photosphere, chromosphere,
and corona, as shown in Figure 11.1. The photosphere is the base of the
atmosphere. The upper most layer, that is, the corona extends to very large
distances in the inter-stellar space.

11.1.1 Photosphere

The visible surface of the Sun lies in the photosphere. The Sun is opaque
below this region. As we move outward in the photosphere, the opacity slowly
decreases and we eventually reach the region of free emission. The attenuation
of light, emitted from a point at radius r, is proportional to exp(−τ), where

Interior

Photosphere

Chromosphere

Transition zone

Corona

500 Km

2,300 Km

0 Km

2,600 Km

τ = 1

FIGURE 11.1: An illustration of the different layers in the solar atmosphere,
from the photosphere to the corona.
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τ is the optical depth, given by

τ =

∫ ∞

r

κ̄(r′)ρ(r′)dr′ , (11.1)

where κ̄ is the Rosseland mean opacity and ρ is the density. Here we have
assumed that the radiation propagates radially outward and the observer is
located at very large distance, which may be taken to be infinity. We receive
visible radiation from the photosphere, which is a narrow layer of thickness
roughly 500 Km. Below the photosphere, τ >> 1, leading to very strong atten-
uation. The optical depth τ at the base of the photosphere is approximately
equal to 1.

Near the surface, the dominant contribution to continuum opacity of the
Sun comes from the H− ions, discussed in Section 8.6. These ions have ion-
ization potential of 0.754 eV and can absorb photons at visible and higher
frequencies.

The gas density in the photosphere varies roughly in the range 10−7 g/cm3

to 10−9 g/cm3 from the lower to upper boundary. For comparison, the density
of air near the Earth’s surface is of order 10−3 g/cm3. Hence the photosphere
is very sparse, with density almost 100,000 times smaller compared to air.

The temperature decreases with radius in the photosphere. At the base,
the temperature is 6,500K. At the upper boundary the temperature is 4,400K.
The effective temperature at the visible surface is 5,778K. The photosphere
is cooler in comparison to the lower layers. Most of the absorption lines we
observe in the solar spectrum are produced in the photosphere, due to its lower
temperature. If we view the Sun radially, we get emission integrated over all
the layers. However, if we view it tangentially, along the limb, as shown in
Figure 11.2, we get emission only from the cooler regions in the photosphere.
Hence near the surface, the Sun appears darker in comparison to the body.
This phenomenon is called limb darkening.

SunObserver

Photosphere

FIGURE 11.2: The photosphere of the Sun appears darker if viewed tan-
gentially because it is cooler in comparison to the interior.
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The photosphere appears granulated, as shown in Figure 11.3. The granu-
lation arises due to convection cells formed by rising and falling air below the
photosphere. The bright regions correspond to hot rising gas, which originates
deep inside the Sun. As the gas rises, it cools and sinks in regions that appear
darker. The difference in temperature in these two regions is found to be a few
hundred degrees. These cells are continuously changing, typically lasting for a
fraction of an hour, and have spatial extent of roughly 700 Km. The speed at
which the gas rises near the center of a cell is measured by Doppler effect to
be approximately 1 Km/sec. We also observe supergranules with diameters of
about 30,000 Km. These change at a slower rate in comparison to granules,
typically lasting for a few days.

FIGURE 11.3: A picture of the solar surface showing its granulated struc-
ture. This image was observed by Vasco Henriques using the Swedish 1 m
Solar Telescope (SST) at the Institute for Solar Physics, Stockholm, Sweden.

11.1.2 Chromosphere

The layer above the photosphere is called the chromosphere. Here the gas
density is very low, smaller than the photosphere by a factor of 104. Further-
more, the intensity of radiation produced in this region is also very small.
However, the temperature increases with radius in the chromosphere. It in-
creases from 4,400K at the base to about 25,000K at the top. Due to high
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temperature, many atoms are found in the ionized state in the chromosphere.
Furthermore, in some regions of the chromosphere, a significant fraction of the
neutral atoms, such as hydrogen, are found in excited states. Hence several
absorption and emission lines of atoms as well as ions, such as HeII, FeII,
SiII, CrII, and CaII, are seen in this region. In the visible spectrum we ob-
serve only absorption lines because the emission lines are overwhelmed by the
continuum emission from the photosphere. But at infrared and ultraviolet fre-
quencies emission lines are also seen. Emission lines at visible frequencies may
by seen during a total eclipse when most of the continuum emission is blocked
out. This is called the flash spectrum. For example, one sees the Balmer Hα

line, which gives the chromosphere a reddish appearance. The chromosphere
may also be seen using a narrow filter that transmits only a narrow range of
frequencies centered at this line.

The high temperature in the chromosphere means that particles in this
region have very high velocities, given by the relationship, Equation 8.69,
derived using the kinetic theory of gases. Due to low density, however, the
energy per unit volume is very small. It is smaller than the energy density in
the photosphere by a factor of more than 103. In contrast to the photosphere,
the temperature in the chromosphere cannot be interpreted as the blackbody
temperature. The fact that temperature increases with distance from the cen-
ter is a puzzle, which is not satisfactorily resolved so far. We discuss this in
more detail below.

11.1.3 Corona

Above the chromosphere we have the solar corona. The temperature rises
very rapidly in the transition region, reaching roughly a million degrees in the
corona, where it continues to increase gradually. The density in corona is very
small, on the order of 10−16 g/cm3 in the lower corona. This is roughly a factor
of 104 smaller than in the chromosphere. Due to its very high temperature,
the corona contains highly ionized atoms. Most of the light elements, such as
H, He, C, N, and O, are completely ionized. Even heavier elements such as
calcium and iron have most of their electrons removed. Hence one observes
absorption and emission lines from highly ionized atoms from the corona.
Many of these ions were unfamiliar to early astronomers. Hence they were not
able to properly interpret this spectrum.

At visible wavelengths, the corona is not visible because its emission is very
low compared to the photosphere. However, during total eclipse, the corona
is observable at visible frequencies. An image of the corona during total solar
eclipse is shown in Figure 11.4.

The corona has much higher emission in radio and x-rays. It emits radio
waves by the process of free-free emission and synchrotron radiation. The x-ray
emission is due to the atomic transitions which can produce high-frequency
emission lines at such extreme temperatures. An x-ray image of the Sun,
shown in Figure 11.5, directly reveals the corona. The image shows very un-
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even emission. We also see regions where the emission is extremely small.
These are called coronal holes. These are regions of open magnetic field lines.
Here the field lines from the Sun extend large distances out into the inter-
stellar medium. Highly energetic charged particles, predominantly electrons
and protons, which originate inside the Sun, are able to move freely paral-
lel to the magnetic field lines. They escape freely from coronal holes and,
hence, these regions have low plasma densities and temperatures. In contrast,
charged particles get trapped in regions of closed magnetic field, producing
high densities and temperatures. Hence the intensity of x-rays is very high in
these regions.

FIGURE 11.4: An image of the Sun during total eclipse reveals the corona
(Image courtesy of High Altitude Observatory/NCAR/UCAR.)
.

The flux of energetic charged particles from the Sun is called solar wind.
It is emitted continuously in all directions and extends to very large dis-
tances into the solar system. The speed of the solar wind ranges from 300
Km/s to 800 Km/s, with the higher speeds being produced by the coronal
holes. The solar wind has a considerable effect on the Earth’s magnetic field.
Close to the surface of the Earth the magnetic field is approximately dipolar.
However at higher altitudes it gets deformed with open field lines extending
to large distances. The region above the dipolar magnetic field is called the
magnetosphere. An illustration of how the solar wind forms the Earth’s mag-
netosphere is shown in Figure 11.6. The charged particles in the solar wind
become trapped in the Earth’s magnetic field and produce the spectacular
phenomenon of Aurora Borealis.
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FIGURE 11.5: An image of the Sun at x-ray frequencies taken at the Yohkoh
Solar Observatory. (Yohkoh image is courtesy of the NASA-supported Yohkoh
Legacy data Archive at Montana State University.)

A surprising feature of the corona and chromosphere is the increase in
temperature with distance, r, from the center of the Sun. The temperature in
the corona rises to more than a million degrees. Because heat flows radially
outward from the Sun, it is more reasonable to expect a decrease in temper-
ature with r. The reason for this increase is still not well understood. As in
the case of the chromosphere, we may use Equation 8.69 in order to relate
the temperature in the corona to the mean speed of particles. The energy per
unit volume decreases with r even in corona and chromosphere due to the
rapid decrease in gas density in these regions. In particular, the kinetic energy
density, that is, kinetic energy per unit volume, in the corona is two orders
of magnitude smaller than the kinetic energy density in the chromosphere.
Hence it is only the temperature and not the energy density that shows an
anomalous increase with r. It is also important to note that the solar corona is
far from thermal equilibrium. Hence the distribution of particle velocities does
not follow the Maxwell–Boltzmann distribution, and the concept of temper-
ature is not applicable in the usual sense. In other words, we cannot reliably
use Equation 8.69 in order to relate temperature to the mean value of the
square of velocity, < v2 >. Hence, rather than introducing the concept of
temperature, it might be better to directly consider the variable, < v2 >. It
is really this variable that shows the anomalous increase as we move outward
from the photosphere.

There are many proposals to explain this behavior. Here we briefly explain
one of these mechanisms that involves heating by magnetic field reconnections.
The solar atmosphere has a complex structure of magnetic field flux tubes,
which extend to large distances beyond the photosphere. These flux tubes
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get twisted and entangled due to changes in the solar atmosphere. Eventually
they get realigned, releasing magnetic energy into the solar atmosphere that
may accelerate particles to very high energies, thus leading to a large value of
< v2 >.

11.2 Dynamo Mechanism for Magnetic Field Enhance-

ment

All astrophysical objects, the Sun, Earth, Milky Way, have a significant mag-
netic field. How is this field generated and maintained? There is no known
mechanism by which these objects can generate a magnetic field by them-
selves. However, let us assume that initially there exists a small magnetic
field, called the seed field. This seed field can be enhanced and maintained
by the rotational and convective motion of these objects. This is called the
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FIGURE 11.6: An illustration of the interaction of solar wind with the
Earth’s magnetic field. The solar wind is compressed and deflected by the
Earth’s magnetic field at the bow shock. Below the bow shock is the magne-
tosphere. Finally close to the surface of the Earth the field shows a dipolar
behavior.
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dynamo mechanism. One requires conducting fluid and sufficient mechanical
energy for this purpose. The mechanical energy of rotation and convection is
converted to magnetic energy. If there is no motion, the field will decay slowly
with time. Recall that, except for ferromagnetic materials, none of the other
materials can remain magnetized after the removal of the external magnetic
field. Because astrophysical objects are not ferromagnetic, it is reasonable that
without motion, their field will decay.

FIGURE 11.7: The dynamo mechanism for the enhancement of a magnetic
field. The disc rotates with an angular speed ω in a background magnetic field
~B. This process generates a current I which further enhances the magnetic
field.

Let us now assume that there exists a small seed magnetic field. If the
conditions are right, this field can be enhanced by mechanical motion. We
explain this by taking a simple example. Consider a conducting disk, rotating
counterclockwise, as shown in Figure 11.7. The disk is mounted on a con-
ducting cylindrical rod at its center. There exists a background magnetic field
pointing upward. A coil is connected between the outer edge of the disk and
the rod by brushes. The coil remains stationary as the disk rotates. As the
disk rotates, an electrical current flows through the disk and coil and back
through the rod. Due to this current, an additional magnetic field is gener-
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ated. The coil is oriented such that the magnetic field generated points in the
same direction as the background magnetic field. Hence the overall strength of
the field is enhanced. The enhancement of the field leads to increased current,
which further enhances the field. The energy of the increased field and current
is provided by the mechanical force that rotates the disk. The field saturates
once the current becomes so large that the energy is dissipated at the same
rate as it is supplied.

In the Sun and other astrophysical objects, a similar mechanism is oper-
ative, powered by rotation and convection. These objects have plasma that
can sustain electric currents. Given the right circumstances, the magnetic field
can be enhanced by the dynamo mechanism. The detailed mechanism in such
objects is complicated and not well understood so far. As we will see, the solar
magnetic field shows a periodic variation that is closely tied to the variation
in the number of sunspots. This periodic variation is believed to be one of the
important clues to the dynamo operational inside the Sun.

11.3 Sunspots and the Solar Cycle

A fascinating phenomenon observed on the solar surface is the appearance of
sunspots. These are regions where the intensity is much smaller than the mean
intensity on the surface. The intensity is smaller due to lower temperature.
The surface temperature at a sunspot is typically about 4,000K in contrast to
the mean surface temperature of 5,770K. The number of sunspots varies peri-
odically with time with a period of about 11 years. The variation in sunspot
number with time is shown in the lower plot of Figure 11.3. The plot shows
the percentage of area of the visible solar hemisphere covered by sunspots,
averaged over a day.

The average latitude at which the sunspots appear also keeps changing,
with a periodicity of 11 years. At the beginning of the cycle, sunspots appear
at higher latitudes, approximately 30 to 40 degrees, both in the northern
and the southern hemispheres. A sunspot typically lasts for about a month.
After it disappears, succeeding sunspots appear at lower latitudes. In time,
the sunspots appear close to the equator and eventually their density reduces
to zero. This marks the end of the cycle. Sunspots then appear again at higher
latitudes. This variation with latitude is shown in the upper plot of Figure
11.3, called the butterfly diagram.

A sunspot has a central dark region called umbra, surrounded by penum-
bra, where the intensity is higher than in the umbra. In the umbra, the mag-
netic field is vertical, perpendicular to the surface, whereas it is parallel to
the surface in the penumbra. Sunspots occur in groups. A group has one large
sunspot surrounded by several smaller ones. The size of the dominant sunspot
is typically on the order of 30,000 Km.
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The polarity of all dominant sunspots is the same in a particular hemi-
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sphere. The polarity is reversed in the opposite hemisphere. Furthermore,
smaller sunspots have opposite polarity in comparison to the dominant spot.
The polarities are reversed in the next 11-year cycle. For example, during
a particular cycle, all the dominant spots in the northern hemisphere may
be magnetic north, whereas those in the southern hemisphere may be mag-
netic south. In the next 11-year cycle, the dominant spots in the northern
hemisphere would be magnetic south with opposite polarity in the southern
hemisphere. Along with a change in the polarity of sunspots, the overall po-
larity of the Sun also undergoes a reversal. The large-scale magnetic field of
the Sun shows a 22-year cycle.

(a) (b) (c)

N N N

FIGURE 11.9: (a) The dipolar or poloidal magnetic field at the beginning
of the solar cycle. (b) Due to higher angular velocity near the equator, the
magnetic field starts to get distorted. (c) With time, the magnetic field lines
become nearly parallel to the equator. Such a magnetic field is called toroidal.

At the beginning of the cycle, the large-scale magnetic field of the Sun
is almost dipolar, with magnetic field lines going from geographic north to
south poles, as shown in Figure 11.9. Such a field is called poloidal. The
angular velocity of the Sun is higher near the equator in comparison to the
poles, that is, the Sun does not rotate like a rigid body. However, plasma
cannot move freely perpendicular to magnetic field lines because it consists
of charged particles. Hence the magnetic field lines are frozen into the solar
plasma and are dragged along with it. This leads to a distortion of the field
lines, which now develop a component parallel to the latitudes. At this time
the number of sunspots is near its minimum. A small number of sunspots
start developing at high latitudes. As the magnetic field continues to distort,
the number of sunspots reaches a maximum. At this point the large-scale
magnetic is almost toroidal, that is, it circles around the Sun nearly parallel
to the latitudes. Subsequently, the field again becomes nearly poloidal but
with reversed polarity. The number of sunspots reaches a minimum. The mean
latitude of sunspots at this stage is close to the equator. The large-scale field
undergoes another reversal during the next 11 years. Hence after 22 years, the
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large-scale field returns to its original configuration, completing a full cycle.
The sunspots form when the magnetic field in the solar interior gets pushed
to the surface due to convective currents. Here we do not discuss the details
of this process.

Besides the variation over the 11-year cycle, the number of sunspots also
shows a long time variation. This is shown in Figure 11.10. We find that the
number of sunspots is different for different cycles. The intensity of the Sun
also shows a similar variation. The total solar flux is found to be large when
the number of sunspots is large. One also sees some time intervals, such as the
Maunder Minimum, where the number of sunspots is very small. During this
time, the solar flux was also found to be significantly reduced. Historically,
this coincides with a very cold period, the little ice age, on Earth. This also
shows the significance of understanding the long-term variation of sunspots.
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FIGURE 11.10: The time dependence of yearly averaged sunspots from
1700 to 2000. One sees long-term variation in the number of sunspots. The
Maunder Minimum corresponds to the time interval 1645–1715. During this
period, the number of sunspots observed was very small. (Data taken from
SIDC-Solar Influences Data Analysis Center, Royal Observatory of Belgium.)
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11.4 Some Transient Phenomena

Finally we introduce some transient phenomena associated with the magnetic
field in the solar atmosphere. We observe several features that last only for a
short time interval. One such feature is called prominence or filament. It is a
region of ionized gas associated with the magnetic field in the solar atmosphere
and typically lasts a few days or weeks. It is called a filament if viewed against
the background of the solar disk. If viewed over a continuum range of visible
frequencies, a filament appears darker than the surroundings. However, it
appears bright when viewed at the Balmer Hα frequency. A similar feature is
called a prominence, if viewed along the limb of the Sun, as shown in Figure
11.11. The figure shows a loop prominence. In this case, the prominence is
produced by gas confined in a magnetic loop.

FIGURE 11.11: An image of prominence taken at extreme UV frequencies.
(Figure courtesy of NASA.)

Another interesting solar phenomenon is solar flares. During a flare, a huge
amount of energy stored in magnetic field in the solar atmosphere is released.
The flares originate at the location of sunspots on the Sun. The time scale
of a flare is typically between 1 second and 1 hour. During this short time
interval, energy on the order of 1030 ergs may be released. This huge amount
of emitted radiation causes considerable disturbances on Earth. In particular,
it can affect communication, electronic equipment, as well as cause hazards to
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spacecraft. Hence it is important to make reliable predictions of their future
occurrences.

Exercises

11.1 The diameter of a dominant sunspot is typically about 30,000 Km. De-
termine its angular diameter as seen by an observer on Earth. What
percent of the solar disk is covered by this sunspot? Assume that it is
located at the center of the disk.

11.2 The rotation period of the Sun near the equator is about 25 days and
about 36 days near the poles. Determine the time taken by a point at
the equator to complete one more revolution compared to a point near
the pole.

11.3 Using Equation 8.69, determine the mean velocity of electrons and pro-
tons in the photosphere and the corona. Determine also the kinetic ener-
gies per unit volume in these two regions. Their temperature can taken
to be 4,400K and 106K and the gas density, 10−7 g/cm3 and 10−16

g/cm3, respectively.
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The solar system is a gravitationally bound system consisting of the Sun,
planets and their moons, smaller objects such as asteroids, minor planets, and
comets, the interplanetary medium, and the hypothetical Oort cloud. It is a
planar system with the orbits of all planets lying roughly in the same plane.
The motion of each planet is dominated by the gravitational pull of the Sun.
The effect of all other objects is relatively small and can be neglected to a
good approximation. The Sun gives dominant contribution, about 99.86%, to
the mass of the solar system. Its size, however, is much smaller in comparison
to the radius of the solar system. The outermost planet, Neptune, is at a
distance of about 30 AU, which is roughly 6,000 times the solar radius. Due to
these large distances, the angular momentum of the solar system is dominated
by the planets and not the Sun. The solar system actually extends to much
larger distances. Beyond Neptune lies the Kuiper belt, at distance between 30
AU and 55 AU. It consists of a large number of small objects and its shape
roughly resembles a donut. At much larger distances, on the order of 5,000
AU to 100,000 AU, lies the hypothetical Oort cloud. It is believed to be a
spherically symmetric region, containing a huge number of small objects. The
comets originate in the Kuiper belt and the Oort cloud.

The four inner planets, Mercury, Venus, Earth, and Mars, are called ter-
restrial planets due to their similarity to Earth. The remaining four, Jupiter,
Saturn, Uranus, and Neptune, are called Jovian (Jupiter like) planets or gas
giants. The mean radius, mass, sidereal period of rotation, and the inclination
of the rotation axis of all the planets are summarized in Table 12.1. As can
be seen from the table, there is a clear difference in the physical properties of
these two classes. The Jovian planets have a much larger radius and mass. Fur-
thermore, the terrestrial planets have a solid surface and composition similar
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TABLE 12.1: The mean radius, mass, rotation period, and inclination of
the rotation axis, relative to their revolution axis, for all eight planets. The
negative sign in the sidereal periods of Venus and Uranus means that the
direction of rotation of these planets is opposite to that of Earth.

Planet Mean Mass Sidereal Period Inclination of
Radius (MEarth) of Rotation Rotation Axis
(Km) (days)

Mercury 2439.7 0.055 58.6 ∼ 0o

Venus 6051.8 0.866 −243 177.3o

Earth 6371.0 1 0.9973 23.44o

Mars 3396.2 0.107 1.026 25.19o

Jupiter 69,911 317.8 0.4135 3.13o

Saturn 58,232 95.159 0.444 26.73o

Uranus 25,362 14.536 −0.718 97.77o

Neptune 24,764 17.147 0.671 28.32o

to Earth. The Jovian planets, in contrast, are predominantly liquid. Excluding
Mercury, all the planets have atmospheres.

S

aphelionperihelion

FIGURE 12.1: The elliptical orbit of a planet around the Sun (S). The
closest point is called the perihelion, whereas the farthest is called aphelion.
The eccentricities of all the planets are much smaller than that of the ellipse
shown in this figure.

12.1 Orbital Properties of Planets

The orbits of all planets around the Sun are elliptical, with the Sun at one
of the foci. As discussed in Chapter 5, their motion is described by Kepler’s
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laws. The point at which a planet is closest to the Sun is called perihelion, the
opposite point is called aphelion; see Figure 12.1. Some basic data on planet
orbits is listed in Table 12.2. Mercury is the closest planet to the Sun and
Neptune the farthest. The trajectories of planets in the solar system display
some remarkable properties, as listed below:

• All planets revolve around the Sun in the same direction, from west to
east.

• The rotation or spin of the Sun as well as most planets is also in the
same direction as their direction of revolution, that is, from west to east.
The only exceptions are Venus and Uranus.

• The orbits of all planets lie approximately in the same plane.

• The orbits are nearly circular. The eccentricity of the elliptical orbit is
small.

This regularity suggests that the solar system may have formed by the collapse
of a large rotating cloud of gas and dust. As we shall see, this hypothesis
explains the main features of the solar system. The distances of planets from
the Sun are given in Table 12.2. Here we give the semi-major axis of their orbit.
These distances approximately follow an empirical rule called the Titius–Bode
law. It states that the semi-major axis a of a planet in AU is given by

a = 0.4 + 0.3× 2n ,

with n = −∞, 0, 1, 2... from Mercury to Neptune. The Titius–Bode law pre-
dicts the distances correctly except for a gap at n = 3. This may not be a
failure as the largest object, Ceres, in the asteroid belt is found to lie at this
position. The rule, however, does not predict the distance of Neptune reliably.

The time period of revolution of planets around the Sun is given by Kepler’s
law, Equation 5.9. Inserting the gravitational constant and the mass of the
Sun, we obtain the time periods from Mercury to Neptune of, 0.24, 0.614, 1,
1.88, 11.87, 22.66, 84.33, and 165.19 years. These are in good agreement with
observations.

The motion of all planets is governed primarily by the gravitational pull
of the Sun, with the force exerted by remaining objects being relatively small.
Furthermore, the orbit of natural satellites is governed by the planet around
which it is in orbit. The effect of all other bodies is small and can be ignored
to a good approximation. However, these bodies lead to small perturbations
in the orbit. These are also measurable and must be included for an accurate
description of the solar system. Furthermore, these perturbations, acting over
a long period of time, can lead to large deviations. For example, the force
exerted by the Moon (and the Sun) on the Earth leads to the precession of its
rotation axis, which is a large effect for time intervals on the order of 10,000
years.
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TABLE 12.2: The orbital parameters of planets, that is, the semi-major axis,
eccentricity of the elliptical orbit of a planet, and the inclination of the orbital
plane relative to the ecliptic.

Planet Semi-major Eccentricity Orbital Inclination
Axis a (AU) Relative to Ecliptic

Mercury 0.387 0.206 7.0o

Venus 0.723 0.007 3.4o

Earth 1.0 0.017 0o

Mars 1.524 0.093 1.85o

Jupiter 5.204 0.049 1.31o

Saturn 9.582 0.056 2.49o

Uranus 19.229 0.044 0.77o

Neptune 30.104 0.011 1.77o

The perturbations also lead to the remarkable phenomenon of resonance.
Two different periodic motions are said to be in resonance when the ratio of
their time periods, T1 and T2, is equal to a ratio of two small integers, that is,

T1
T2

=
n1
n2

, (12.1)

where n1 and n2 are small integers. A well-known example is the Moon, whose
orbital period is nearly equal to its rotation period. This is an example of spin-
orbit resonance. Due to this resonance, the Moon always presents the same
face to an observer at Earth. A similar phenomenon is seen for the natural
satellites of other planets. The sidereal rotation period of Mercury and its
period of revolution are in the ratio 2/3. One also sees resonances in the time
periods of revolution of planets. An example is the period of Pluto (246 years)
and Neptune (165 years), which has the ratio 3/2. Another example is the
moons (Ganymede, Europa, and Io) of Jupiter, whose periods are in the ratio
4:2:1. Furthermore, there are gaps in the asteroid belt called Kirkwood gaps.
Some prominent examples of these gaps occur at distances of 2.5 , 2.82 and
3.27 AU from the Sun. The corresponding time periods are in the ratio, 1/3,
2/5, and 1/2, respectively, with respect to Jupiter’s time period. These are
explained in terms of the instability induced by Jupiter at these distances.

12.2 Retrograde Motion of Planets

The motion of a planet appears quite complicated if viewed from Earth. For
example, at times they display retrograde loops, as shown in Figure 1.11,
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when the planet reverses its direction of motion, and makes a loop before
returning to its original direction. Their uneven motion puzzled the ancient
observers, who called them planets, which means wanderer in Greek. We can
now explain this behavior in terms of the intrinsic motion of the Earth, as
discussed in Chapter 1. In order to study this in more detail, let ~rE and ~rP
represent the position vectors of Earth and another planet with respect to the
Sun. The position vector of the planet with respect to Earth, ~rPE , is given by

~rPE = ~rP − ~rE . (12.2)

Assuming that the planets lie in the x − y plane, the components of this
position vector are given by

x = rP cosωP t− rE cosωEt ,

y = rP sinωP t− rE sinωEt , (12.3)

where t is the time and ωP and ωE , respectively, represent the angular speeds
of the planet and the Earth relative to the Sun. These formulae can be used to
predict the position of any planet as observed from Earth. We will use them
later in this section to determine the trajectory of Mars.

OppositionConjunction
ES

P

φ

e

FIGURE 12.2: The orbit of Earth (E) and a superior planet (P) around
the Sun (S). The positions corresponding to opposition and conjunction are
indicated. The angles e and φ are, respectively, called the elongation and phase
angle of the planet.

Planets that are further away from Sun, in comparison to Earth, are called
superior; ones that are closer are called inferior. As shown in Figure 12.2, the
elongation, e, of a planet is its angular position relative to the Sun, as observed
from Earth. The phase angle, φ, is the angle of observation of the body relative
to Sun. Let us first consider superior planets. They are said to be in opposition

when they are on the opposite side of the Sun and in conjunction when on
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the same side, as illustrated in Figure 12.2. Due to the different angles of
inclination of planes of revolution of different planets, a planet is never exactly
in the opposite or same direction as the Sun. Hence an opposition is defined
more precisely as the location when the RA of the planet differs from that
of Sun by 180o. In any case, an opposition is the position when the planet
is closest to Earth and conjunction when it is farthest. The retrograde loop
happens when the planet is in opposition, as discussed in Chapter 1.

In Figure 12.3 we show the orbit of an inferior planet, such as Mercury or
Venus. These planets are never in opposition. They are in inferior conjunction
when they are closest to the Earth and superior conjunction when they are
farthest, as shown in Figure 12.3. The maximum elongation, e, of Mercury and
Venus is observed to be 28o and 47o respectively. Because they are always close
to the Sun, they can only be seen for a certain period of time after sunset or
before sunrise. In the middle of the night, they lie below the observer’s horizon
and hence are not observable. Furthermore, these planets show phases exactly
as shown by the Moon. We observe the full planet when it is in superior
conjunction. At this point, the planet is farthest from Earth and hence appears
smallest. It shows a crescent phase when it is on the same side of the Sun as
the Earth. Inferior planets also show retrograde motion. In this case, it also
happens when they are closest to Earth, that is, at inferior conjunction.
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FIGURE 12.3: The orbit of Earth (E) and an inferior planet (P) around
the Sun (S). The positions corresponding to superior and inferior conjunction
are indicated. The positions A and B correspond to maximum eastern and
western elongations, respectively. The angle e, shown in the figure, corresponds
to maximum western elongation.

Let us now predict the time interval between two retrograde loops of a
planet. Let us first consider a superior planet. Let TEP be the time interval
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between two such events. This is also called the synodic period. In time TEP ,
Earth completes one more complete revolution in comparison to the planet.
Hence the angle traversed by Earth is 2π more than that traversed by the
planet. This implies

ωETEP = ωPTEP + 2π ,

where ωE = 2π/TE and ωP = 2π/TP are the angular speeds of the Earth
and the planet, respectively, and TE and TP the corresponding periods of
revolution. This leads to

TEP =
TETP
TP − TE

. (12.4)

Using this, the synodic period of Mars is found to be 2.14 years. For an inferior
planet, the relationship is simply

TEP =
TETP
TE − TP

. (12.5)

We next use Equation 12.3 to show the trajectory of Mars as observed
by an observer on Earth. The observer moves along with Earth around the
Sun but does not rotate along with Earth. Alternatively, we view the planet
Mars in intervals of one sidereal day, after which the Earth rotates back to its
original position relative to background stars. The resulting motion is shown
in Figure 12.4. The retrograde loop is clearly seen when Mars is closest to
Earth.

x

y

E

Mars

FIGURE 12.4: The orbit of Mars as seen from Earth (E). The retrograde
loop is seen along the x-axis.
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12.3 Albedo and Temperature of Planets

The planets are visible to us because they reflect part of the sunlight incident
upon them. The remaining part is absorbed and maintains their temperature.
They also emit blackbody radiation corresponding to their surface tempera-
ture. This radiation lies in the infrared part of the electromagnetic spectrum.

Let LSun denote the luminosity of the Sun. Consider a planet at distance
r and radius R. The flux density at the surface of the planet is LSun/(4πr

2).
Hence the total flux incident on the surface of the planet, Lin, is given by

Lin =
LSun

4πr2
πR2 , (12.6)

where πR2 is the cross-sectional area of the planet. Let Lref be the radiation
reflected by the planet. The parameter Bond Albedo, A, is defined as the ratio
of reflected to incident flux, that is,

A =
Lref

Lin
. (12.7)

This gives us an estimate of the total flux, integrated over frequencies and
surface area, reflected by the surface. This is related to the observed brightness
of the planet at visible frequencies. However, the radiation is not reflected
isotropically. Hence the actual brightness perceived by an observer depends
on the angle of observation. The Bond Albedo takes values between 0 and 1.
For planets, Mercury has the smallest value of 0.068 and Venus the largest,
0.9. It is listed in Table 12.3 for all the planets.

It is also convenient to define the Geometric Albedo. This is defined as the
ratio of the brightness of an object at zero phase angle to the brightness of a
Lambertian surface, when both are illuminated by the same source. A Lam-
bertian surface has the property that it reflects light isotropically. A rough,
irregular surface is approximately Lambertian because the light after striking
such a surface bounces off in all directions. The Geometric Albedo at visible
frequencies is called the Visual Geometric Albedo. This is the quantity that is
closely related to the observed brightness of planets when they are viewed at
zero phase angle. For a superior planet, this would roughly be the case when
the body is in opposition. For an inferior planet this would correspond to
the position of superior conjunction. The Visual Geometric Albedo of planets
ranges from 0.14 for Mercury to 0.67 for Venus and is listed in Table 12.3.
Due to its high albedo and proximity to the Sun, Venus is the brightest object
in the sky after the Sun and Moon. For Moon, the visual geometric albedo is
0.113.

In chapter 4, as an exercise, we computed the mean temperature of the
Earth by assuming that it is a perfect blackbody. We now make a better
estimate of the temperature of the Earth and other planets by taking into
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TABLE 12.3: The albedo and temperature values for all the planets. The
mean temperature refers to the observed mean surface temperature for ter-
restrial planets and the temperature at 1 bar pressure for Jovian planets.

Planet Bond Albedo Visual Geometric Blackbody Mean
A Albedo Temp. (K) Temp. (K)

Mercury 0.068 0.14 440 440
Venus 0.9 0.67 184 737
Earth 0.31 0.37 254 288
Mars 0.25 0.17 210 210
Jupiter 0.34 0.52 110 165
Saturn 0.34 0.47 81 134
Uranus 0.30 0.51 57 76
Neptune 0.29 0.41 46 72

account their albedo. Let LSun be the total luminosity of the Sun. Consider a
planet of radius R at a distance r. The total flux incident on the surface of the
planet is given by Equation 12.6. Hence the rate at which energy is absorbed
is equal to

Labs = (1−A)
LSun

4πr2
πR2 . (12.8)

In steady state, this much energy is radiated by the planet. We assume that
the emitted radiation corresponds to a blackbody temperature T . Equating
Labs with the luminosity of a blackbody σT 4S, where S = 4πR2 is the total
surface area, we obtain

T =

[

(1−A)LSun

16πσr2

]1/4

. (12.9)

We call this the blackbody temperature of the planet. The computed val-
ues are shown in Table 12.3. For comparison, we also show the mean surface
temperature for terrestrial planets. In general, the two cannot be compared
directly due to the atmospheric greenhouse effect. The atmosphere does not
allow the surface to radiate freely into outer space and hence raises the surface
temperature. From Table 12.3 we see that for Mercury, which has no atmo-
sphere, the agreement with blackbody temperature is very good. However, for
Venus, the surface temperature is much higher. This is due to the greenhouse
effect, which also accounts for the higher surface temperature of Earth. For
the case of Jovian planets, Table 12.3 lists the observed temperature in their
atmosphere at a pressure of 1 bar, which is equal to the atmospheric pressure
at the Earth’s surface.
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12.4 Terrestrial Planets: Interior Structure

The study of planetary science has made remarkable progress since the 1960s
by the use of space probes. The interior structure of Earth-like planets can
be studied by surface probes that can observe seismic waves produced in the
interior. The main features of Earth’s interior are shown in Figure 12.5. The
temperature and density steadily decreases from center to the surface. The
mean density near the surface is about 3 gm/cm3 and near the center, about
13 gm/cm3. Starting from the center, we have the solid, metallic inner core,
consisting of iron and other elements such as nickel and sulfur. Its temperature
is very high, estimated to be about 6,000oC. This is followed by the outer core,
which is liquid and has a composition similar to the inner core. The next layer
is called the mantle, composed of very dense and hot silicate rock. Due to
its high temperature, the rocky material can flow under high pressure. The
outermost layer up to a depth of 35 Km from the surface is called the crust.
It consists of light silicate rock. The upper layer of the mantle along with the
crust is called the lithosphere. It consists of a large number of plates that float
on the mantle. These tectonic plates undergo slow motion and occasionally
collide with one another to produce mountains, earthquakes, etc. Furthermore,
most volcanic activity occurs at the boundary of two plates. The hot magma
that emerges as lava during volcanic eruptions originates in the upper mantle.

solid inner core, nickel−iron

(5,100 − 6,380 Km)

crust, light rock

(0 − 35 Km)

 mantle, mostly solid

(35−2,890 Km)

molten outer core, nickel−iron

(2,890 − 5,100 Km)

FIGURE 12.5: The interior structure of Earth.

At the time of its formation, the Earth was very hot. With time, the
surface has cooled off. The interior, however, is still very hot. Its high temper-
ature cannot be explained in terms of the heat generated during its formation.
There must be another heat source. It was speculated that a significant part
of the heat generated in the Earth’s interior is produced by radioactive de-
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cay of elements such as uranium, thorium, and potassium. This hypothesis
was confirmed by laboratory detection of neutrinos produced in these decay
reactions.

The Earth has an atmosphere that extends to several hundred kilometers
above the Earth’s surface. The outermost layer of the atmosphere is called the
exosphere. It starts at an altitude of about 600 Km and eventually merges into
outer space. In contrast to the lower layers, which are dominated by heavier
gases, the exosphere is primarily composed of hydrogen and some helium. An-
other important component of the outer atmosphere is the ionosphere, which
extends from about 100 Km to 600 Km. This region is ionized due to ultravio-
let radiation from the Sun. The atmosphere is in hydrostatic equilibrium and
hence described by Equation 8.7. Let P (z), T (z), and ρ(z) be the pressure,
temperature, and density at an altitude z above the Earth’s surface. We have

dP

dz
= −ρ(z)g ,

where g = GM/R2 is the acceleration due to gravity. It is reasonable to ignore
the z dependence of g. Using the gas law and integrating, we obtain

P (z) = P0 exp

[
∫ z

0

dz′
µmHg

kT (z′)

]

, (12.10)

where µ is the mean molecular weight of the atmosphere.
The Earth has a magnetic field, which, to a good approximation, has a

dipole structure. The dipole axis of the field is inclined with respect to the
Earth’s rotation axis by about 11o. The magnetic field is maintained by the
dynamo mechanism, as in the case of the Sun. In the present case, it is the
rotational motion and convective currents of the liquid outer core which gen-
erate the magnetic field. The solar magnetic field flips its direction over a
22-year cycle. The magnetic field of Earth also undergoes reversals. However,
in this case, the cycle has a much longer and irregular period, on the order of
a million years.

The magnetic field strength at the surface of the Earth is about 0.5 Gauss.
In the outer core it is estimated to be about 25 G. Because it is a dipolar
field, it decays as 1/r3 with distance as we move out into space. The magnetic
field plays a very important role for life on Earth. It protects Earth from the
solar wind, which contains very energetic charged particles. In the absence
of the magnetic field, these charged particles would strip away part of the
Earth’s atmosphere. This would lead to substantially larger flux of ultraviolet
radiation on Earth’s surface, which will not allow life to exist. The magnetic
field deflects the solar wind away from Earth into outer space, as illustrated
in Figure 11.6. This outer region of the Earth’s magnetic field is called the
magnetosphere. Some of the charged particles enter the Earth’s atmosphere.
They move parallel to the magnetic field lines and hence are deflected toward
the poles. Due to collisions with oxygen and nitrogen atoms in the atmosphere,
they produce bright colorful lights called the Aurora Borealis.
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Other terrestrial planets also have an internal structure similar to Earth
with a iron-nickel core, mantle, and crust. The relative size of these com-
ponents, however, is different for different planets. Furthermore, the surface
properties also vary significantly. The innermost planet, Mercury, has almost
no atmosphere and its surface is heavily marked with craters. Hence it has an
appearance closer to the Moon rather than Earth. Its rotation axis is nearly
parallel to its axis of revolution. Hence, at all times, the flux density received
from the Sun is maximum near the equator and decreases as we go toward
the poles. The sidereal period of rotation (Tsid) is 58.65 days and the period
of revolution (T ) is 87.97 days. This is in the ratio T/Tsid = 3/2. This implies
that the solar day of Mercury, Tsolar = 2T . Hence one Mercury day is equal to
2 Mercury years. An observer at Mercury would experience daytime for a full
year and nighttime during the next year. Due to the absence of atmosphere,
the temperature, especially near the equator, is very high (∼ 700K) during
the day and low (∼ 100K) during the night. Mercury has a weak magnetic
field, with strength roughly 0.005 Gauss at surface. It has no natural satellite.

The absence of atmosphere can be explained by its proximity to the Sun
and its small size. The mean temperature at the surface of Mercury is high
due to its proximity to Sun. By the kinetic theory of gases, the temperature
is related to the mean speed of the gas particles by Equation 8.69. Hence the
mean speed is higher for higher temperatures. For sufficiently high tempera-
ture, the particles may have enough speed to escape the gravitational pull of
Mercury, which is relatively small due to its small mass. Another important
factor is the effect of the solar wind, which can partially strip the atmosphere
and also raise its temperature. The solar wind strongly affects Mercury due
to its proximity to the Sun and the weakness of its magnetic field. All these
factors combined might explain the absence of Mercury’s atmosphere.

Consider the atmosphere at a certain altitude, h, beyond which we assume
that the density is so low that collisions among particles are almost negligible.
At temperature T , a certain fraction of atoms or molecules would have speeds
exceeding the escape velocity vE . This fraction is given by

fE =

∫ ∞

vE

f(v)d3v = 4π

∫ ∞

vE

f(v)v2dv , (12.11)

where f(v) is the Maxwell-Boltzmann distribution, Equation 8.67, and v is
the total speed of a particle. Half of these particles would have their velocities
directed outward from the planet and hence some would escape its gravita-
tional attraction. If the rate at which the particles are escaping is sufficiently
large, then by current time a large fraction would have left the planet.

These arguments also explain the absence of hydrogen and helium in the
atmospheres of terrestrial planets. Recall that the Sun is predominantly com-
posed of hydrogen and helium. The Jovian planets also have a very high
proportion of these elements. Hence it is important to understand why they
are absent in terrestrial planets. These elements are light and hence would be
pushed up in the atmosphere, while the heavier gases settle down. You can
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show as an exercise that the hydrogen and helium would escape the Earth’s
atmosphere at a relatively large rate to account for their observed low density.
The same argument applies to Venus and Mars.

We observe craters on the surface of many objects in the solar system that
are caused by collision with meteorites. These are called impact craters. In
general, all planets, moons, and asteroids are affected by this phenomenon.
The largest craters seen in the solar system have diameters of a few thousand
kilometers. In Figure 12.6 we show the cratered surface of Mercury near its
south pole. Observations suggest a period of intense crater formation around
3.9 billion years. The craters formed since then have been preserved on the
surface of Mercury, Mars, and some moons in the solar system. However, in
the case of Earth, the surface gets modified due to geological activity, such
as continental drift, earthquakes, volcanoes. Hence the craters are no longer
visible.

FIGURE 12.6: Craters on the surface of Mercury near its south pole. (Image
courtesy of NASA.)

Venus is the brightest astronomical object after the Sun and Moon, with
a maximum apparent visual magnitude of −4.6. The planet Venus is closest
to Earth in terms of size and mass. However, it differs considerably in surface
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and atmospheric properties. Its atmosphere is predominantly carbon dioxide.
It is also very thick, with a surface pressure 92 times the atmospheric pressure
at Earth. Due to the resulting greenhouse effect, the surface is very hot, with
a mean temperature of 737K. The temperature does not change significantly
between the equator and the poles, nor between day and night. The planet
undergoes retrograde rotation at a very slow rate. Its rotation period is longer
than its revolution period. Hence the length of a sidereal day is longer than a
Venus year. Like Mercury, Venus does not have a moon. The surface of Venus is
not visible from outside, being covered by thick clouds made of sulfur dioxide
and droplets of sulfuric acid. These are highly opaque and reflective, and
hence give rise to the high albedo and brightness of the planet. The surface of
Venus contains a very high level of volcanic activity, much more than Earth.
Overall, the conditions at the surface are very hostile. There is some evidence
that suggests that in the past the planet may have been similar to Earth,
containing oceans of water, but the conditions changed due to a runaway
greenhouse effect. The magnetic field on Venus is very weak.

Mars is further away from the Sun in comparison to Earth and hence
can be seen even in the middle of the night. Its maximum apparent visual
magnitude is about −2.91, which is exceeded only by Jupiter and Venus.
Its reddish, rust-like color is due to the presence of iron compounds on its
surface, which presents a rocky, dusty, regolith structure. Its rotation period
and inclination of the rotation angle are similar to Earth. Hence it displays
seasons with the Sun being overhead at different positions at different times of
the year. Its atmosphere is very thin and predominantly composed of carbon
dioxide. The temperature varies steeply with time as well as from the equator
to poles. The summer temperature at the equator varies from 180K to about
300K. At the poles the temperature may be as low as 130K. Hence it is
a very cold planet. The magnetic field as well as plate tectonic activity are
absent at present. However, geological evidence indicates these may have been
present some billions of years ago. The Martian surface is also heavily cratered,
especially in the southern hemisphere. As in the case of Mercury, this suggests
that the surface has been preserved for billions of years since the time of heavy
crater formation. Mars has two small moons, Phobos and Deimos.

12.5 Jovian Planets

The Jovian planets are much larger, more massive, and have a very differ-
ent internal structure in comparison to the terrestrial planets. Their internal
structure is depicted in Figure 12.7. The details vary between different plan-
ets. Jupiter and Saturn are composed predominantly of hydrogen and helium
in liquid and gaseous form. The core of Jupiter is believed to be composed of
rock and iron, whereas for other planets it is dominantly rock and ice. In the
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case of Jupiter and Saturn, the core is surrounded by a layer of liquid metallic
hydrogen, which may also contain some helium. Metallic hydrogen means that
some of the electrons in this layer are free and not bound to hydrogen atoms.
This layer is surrounded by a layer of liquid molecular hydrogen followed by
gaseous atmosphere, which is composed predominantly of molecular hydro-
gen and helium, similar in composition to the solar atmosphere. The internal
structure of Uranus and Neptune is considerably different. It is estimated that
the core is surrounded by a layer composed of water, ammonia, and methane
ice. This is followed by an atmosphere consisting of hydrogen, helium, and
methane gases. These planets do not have a solid surface. The visible surface
lies in their atmosphere. In the case of Jupiter and Saturn, it is formed by
clouds of ammonia crystals. For Uranus and Neptune it is due to the presence
of methane gas in their atmosphere. Methane strongly absorbs red light and
reflects or scatters blue light, thus leading to their observed bluish color. All
the Jovian planets have a strong magnetic field.

core

water, ammonia

and methane ice

(b) Uranus and Neptune

H, He, methane gas

atmosphere

(a) Jupiter and Saturn

core

liquid metallic H

liquid molecular H

atmosphere

FIGURE 12.7: The internal structure of Jovian planets.

Jupiter is often seen as the brightest object in the night sky, following
the Moon. Venus is brighter but it is visible only for a limited time. The
maximum apparent visual magnitude of Jupiter is −2.94. The atmosphere of
Jupiter generates very strong storm systems with wind speeds greater than 400
Km/hour in some cases. Its rotation period, as well as that of all the Jovian
planets, is shorter than that of Earth. The strong wind patterns may be due
to its larger rotation period and radius. A prominent feature on its surface is
the great red spot in its southern hemisphere. This is an anti-cyclonic storm,
larger than the size of Earth, moving counterclockwise with a rotation period
of about 6 days. It has been in existence for a very long time, possibly 400
years.
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The atmospheric temperature of Jovian planets is very cold. The tempera-
ture at the position where the pressure is 1 bar, same as atmospheric pressure
at Earth’s surface, is given in Table. 12.3. The temperature increases as one
moves toward the center. The temperature in the core of Jupiter may be as
high as 24,000K. Due to their low temperature and strong gravitational pull,
the Jovian planets are able to retain hydrogen and helium in their atmosphere.

The most striking observational feature of Saturn is its rings, which can
be seen even with a small telescope. They lie in its equatorial plane with the
innermost ring starting at a distance of 66,900 Km from the center of Saturn.
They extend to very large distances of more than 200,000 Km. Their thickness
is very small, less than 1 Km and in some regions as small as 10 m. They are
composed of dusty water ice particles of varying sizes, the largest being the size
of a large boulder, about 10 m. The innermost ring is called the D ring. This
is followed by C, B, and A, which are the main rings of the planet. The rings
orbit around Saturn at different angular speeds. We observe several gaps, the
largest being 4,800 Km wide. It is called the Cassini division and separates the
B and A rings. The rings are probably formed out of primordial matter that
could not condense into a satellite due to tidal forces exerted by Saturn and
its moons. Alternatively, a moon might have disintegrated as it entered the
Roche limit of the planet. The gaps probably arise due to the destabilizing
effect caused by the moons of Saturn, similar to the resonant phenomenon
that causes gaps in the asteroid belt. All the other Jovian planets also have
rings but these are not as prominent as in the case of Saturn.

All the Jovian planets have a large number of natural satellites. Jupiter
has 67 known moons, Saturn 53, Uranus 27, and Neptune 13. The largest
moons of Jupiter, in order of their increasing distance from the planet, are Io,
Europa, Ganymede, and Callisto. Ganymede is the largest moon in the entire
solar system. As we have already mentioned, Ganymede, Europa, and Io show
resonant period of revolution around Jupiter. Furthermore, like our moon,
their orbital period is also in resonance with their rotation period. Hence
they always maintain the same face toward Jupiter. Saturn has 16 moons
that display this phenomenon. The largest moon of Saturn is Titan. It is the
only moon in the solar system known to have clouds and a dense atmosphere,
similar to a planet.

12.6 The Moon

Our Moon displays some rather special properties. It is the largest satellite
among the terrestrial planets. Mars is the only other terrestrial planet that
has satellites. However, both of its satellites, Deimos and Phobos, are tiny in
comparison with the Moon. Their mean radii are 6 and 11 Km, respectively.
The Jovian planets, in contrast, have a large number of satellites, as discussed
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in the previous section. It is very likely that the process of formation of our
Moon is different from that of other natural satellites. In most cases, the
satellites are captured by the planets from the planetary disk. The Earth’s
Moon, however, might have been formed due to a collision of a very massive
object with Earth.

The Moon has a highly cratered surface, very thin atmosphere, and very
weak magnetic field. It has a nearly circular orbit around the Earth with
an eccentricity of about 0.05. Its orbit is also significantly affected by the
Sun’s gravitational field. Hence we cannot determine its trajectory precisely
by simply considering the force due to Earth. Its direction of revolution around
the Earth is the same as that of Earth’s around the Sun. Furthermore, the
orbit is nearly parallel to the ecliptic plane, with an inclination of about 5o.
The orbital plane also undergoes slow change due to the perturbations caused
by the Sun and Earth. Its period of rotation is almost the same as its period
of revolution. Hence one of its faces always remains hidden to an observer on
Earth.
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FIGURE 12.8: The different phases of the Moon, as observed from Earth.
The Moon moves from west to east, with its orbit inclined at approximately
5o to the ecliptic plane.

The different phases of the Moon are illustrated in Figure 12.8. These
phases arise due to its relative position with respect to the Sun. The Moon
rises from the east and sets in the west due to Earth rotation. Its revolution
around the Earth is from west to east. Relative to fixed stars, it returns to
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its original position after approximately 27.3 days. This is called the sidereal
period. Its synodic period, that is, the period over which it completes one
full cycle of phases, is about 29.5 days. The difference in these periods arises
because the Earth travels approximately 1/12 of its orbit in one month. Hence
the Moon has to travel an additional 1/12 of its orbit in order to return to its
original position relative to the Sun and the Earth.

At its new moon phase, the Moon is in the same direction, that is, has the
same longitude, as the Sun. However, its latitude differs slightly due to the
tilt of its orbit relative to the ecliptic plane. The fraction of the Moon that
appears bright starts to increase beyond the new moon. At waxing crescent,
its elevation is maximum at a particular position on Earth at 3 PM. At other
positions on Earth, it may be visible in the evening, at a lower elevation, or at
night, close to the horizon. At first quarter, we observe the half moon, followed
by waxing gibbous, and full moon as shown in Figure 12.8. At full moon, its
elevation is maximum at midnight. Beyond this, the fraction of its illuminated
region begins to decrease.

The position of the Moon as viewed from Earth depends on its orbital
motion as well as the rotation of Earth. Because the direction of revolution
of Moon is same as the rotation of Earth, the position of the Moon shifts
eastward by about 12o every day. In time units, 12o is about 50 minutes.
Hence the moon rise is delayed by 50 minutes every day.

Sun

Moon Penumbra

Umbra Earth

FIGURE 12.9: A solar eclipse or occultation occurs when the shadow of the
Moon falls on the Earth.

12.6.1 Eclipses and Occultations

The fact that the angular size of the Moon is almost identical to that of the
Sun leads to the fascinating phenomena of eclipses, as shown in Figures 12.9
and 12.10. A solar eclipse or occultation occurs when the Moon lies between
the Earth and the Sun. This configuration corresponds to the new moon phase.
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The orbital plane of the Moon is inclined at an angle of about 5o to the ecliptic
plane. Had the two planes been exactly parallel, an eclipse would have occurred
every month. However, due to the inclination, an eclipse can occur only when
the Earth, Moon, and Sun lie along the line of intersection of the two planes.
Hence the phenomenon is not very frequent. The central dark region of the
shadow on Earth is called umbra. The surrounding region, which is partially
in shade, is called penumbra. The lunar eclipse occurs when the Earth lies
between the Sun and the Moon. This is possible only when the Moon is in
its full moon phase. There are many other types of eclipses or occultations
that play an important role in astronomy. For example, the Moon may occult
a star or another planet. Another important example is the occultation of a
star by a planet.

Sun

Penumbra

Moon

UmbraEarth

FIGURE 12.10: The lunar eclipse occurs when the shadow of the Earth falls
on the Moon.

12.7 Why Did Pluto Lose Its Planetship?

Pluto was originally classified as a planet. It is composed primarily of rock
and ice. It lies in the Kuiper belt and has a highly eccentric orbit, with its
distance from Sun ranging from 30 to 49 AU. It is relatively small, with a mass
500 times smaller than that of Earth. However, by the year 2006, astronomers
had found other objects of size similar to that of Pluto. It was impractical to
classify them all as planets. Instead, in 2006 the International Astronomical
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Union (IAU) decided to make a more precise definition of a planet. A planet
is now defined as a celestial body that

1. Is in orbit around the Sun

2. Has sufficient mass for its self-gravity to overcome rigid body forces so
that it assumes a hydrostatic equilibrium (nearly round) shape

3. Has cleared the neighborhood around its orbit

Pluto does not meet criteria 3. Hence it was reclassified as a dwarf planet.

12.8 Formation of the Solar System

The solar system is formed due to the contraction of a primordial cloud of gas
and dust called a nebula, as discussed in Chapter 10. As the cloud shrinks, the
central region becomes dense and opaque to form a protostar, which eventually
acquires hydrostatic equilibrium. The present best estimate of the age of the
solar system is about 4.6 billion years. Let us assume that the nebula initially
had a small angular speed. As it collapses, its rotational speed increases due
to conservation of angular momentum, leading to a large angular speed of the
protostar. The surrounding material continues to fall onto the central object.
The disk forms due to the centrifugal force that is present if the system is
analyzed in a rotating frame. For simplicity, let us assume that the rotational
speed of the protostar is independent of the angular position. In this case, the
centrifugal force is maximum near the equator and negligible near the poles.
Hence the material near the center would be pulled away from the center,
forming a disk, as shown in Figure 12.11. All the planets form in this disk and
hence lie approximately in the same plane. Furthermore, they acquire their
angular momentum from the disk and hence all of them revolve in the same
direction.

The matter in the protostar and the surrounding disk also dissipates energy
due to friction. This dissipative process, however, conserves angular momen-
tum. This leads to a further enhancement of the disk. This is because, as a
particle loses energy, it has to move to larger distances in order to maintain
its angular momentum. This process essentially leads to a transfer of angular
momentum to larger distances from the center. Hence it provides an explana-
tion for why most of the angular momentum of the solar system resides in the
planetary disk.
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(a)

(b)

FIGURE 12.11: A primordial cloud of dust and gas collapses to form the
Sun and the protoplanetary disk. The planets and asteroids eventually form
in this disk.

The disk was initially very hot and in the gaseous state. As it cools, it starts
to condense much like the condensation of raindrops from water vapor in the
atmosphere. Heavier particles condense at higher temperatures. Hence silica
and iron compounds are the first to undergo condensation. These droplets
grow in size as more material condenses on their surface. They may also collide
and undergo fusion with other droplets. This process leads to a large number
of asteroid size objects, called planetesimals, which must have populated the
disk at an early stage. Some of these objects might become sufficiently large so
that they may attract other objects by their gravitational pull. By capturing
all the matter in their vicinity, the planetesimals eventually form planet size
objects.

The formation of Jovian planets starts earlier because the temperature is
lower at larger distances from the protostar. As the temperature cools further,
lighter compounds (hydrogen, ammonia, water, methane) condense, forming
the outer layers of the Jovian planets. Eventually, as the Sun enters the main
sequence, the solar wind clears out the interplanetary medium, thus halting
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further development of planets. In the case of terrestrial planets, condensation
of lighter compounds such as ammonia never takes place. Hence they never
become as large as the Jovian planets.

Exercises

12.1 Determine the orbital angular momentum of the four Jovian planets.
Compare this with the angular momentum of the Sun. Computing the
Sun’s angular momentum is a little complicated because it does not
rotate as a rigid sphere. However, for simplicity, we can assume that it
is a rigid sphere of uniform density and its mean rotational time period
is 30 days.

12.2 Use Equation 5.9 to determine the time period of rotation of the Moon
around the Earth. Its semi-major axis is 384,399 Km. (Ans: 27.46 days)

12.3 Verify that the time periods of objects located at the Kirkwood gaps at
distances, 2.5, 2.82, and 3.27 AU, from the Sun are in the ratio 1/3, 2/5,
and 1/2, respectively, with respect to the time period of Jupiter.

12.4 Verify Equation 12.5 for the synodic period of an inferior planet. Use
Equations 12.4 and 12.5 to determine the synodic period of all the plan-
ets.

12.5 Determine the time interval of the retrograde loop of Mars. To simplify
the calculation, assume the configuration shown in Figure 12.4. Here
Mars is in opposition, closest to Earth, at t = 0. The retrograde loop
begins at some t < 0 when y = 0 and ends at t > 0 when y is again 0.
Hence we need to set

y = rP sinωP t− rE sinωEt = 0 .

In order to get an analytic expression, expand the sin functions, using

sin(θ) = θ − θ3

6
+ ... ,

ignoring higher order terms. This is valid for small θ. Show that the time
t for which y = 0 corresponds to

t2 =
6(rPωP − rEωE)

rPω3
P − rEω3

E

.

Using this, show that the retrograde loop starts at time t ≈ −0.193 years
and ends at t ≈ 0.193 years.

12.6 Determine the solar day of Mercury using the data for sidereal day and
period of revolution. Repeat this exercise for Venus. Note that Venus
undergoes retrograde rotation. (Ans: 1 solar day = 2 Mercury years).
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12.7 Use Equation 12.11 to approximately estimate the fraction of particles
that have speeds greater than the escape speed ve at temperature T .
Using the Maxwell–Boltzmann distribution, we obtain

fE =
( m

2πkT

)3/2

4π

∫ ∞

vE

dvv2e−mv2/2kT .

We make a rough order of magnitude estimate of this integral by replac-
ing the v2 factor inside the integrand by vvE . This gives

fE ∼
√

2m

πkT
vEe

−mv2
E/2kT .

Estimate the fraction ofH2 molecules that have v > vE at a temperature
T ∼ 1, 000K, corresponding to temperature at the base of the exosphere,
located at an altitude of 500 Km. (Ans: approx. 10−6)

12.8 Use the result of Exercise 12.7 to roughly estimate the rate at which H2

can escape the Earth’s atmosphere. Consider the hydrogen molecules at
an altitude of 500 Km. These particles would escape in a time inter-
val required to travel a distance over which the density of atmosphere
changes appreciably. Assume this distance to be 500 Km. Find the cor-
responding time, assuming that they move at speed vE . Hence find the
order of magnitude of the time interval over which all the hydrogen gas
would escape the Earth’s gravitational pull. The reader can also verify
that the corresponding time scale for oxygen or nitrogen molecules is
extremely large. (Ans: 45 sec, about 1 year)
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Most stars are observed to lie in clusters, that is, a collection of stars grav-
itationally bound to one another. We observe a wide array of clusters, from
binary systems to globular clusters, composed of hundreds of thousands of
stars. In a binary system, the two stars move in elliptical orbits with respect
to their common center of mass. Viewed from each star, the other star would
also appear to move in an elliptical orbit. The binary star systems are particu-
larly important because they allow determination of the masses of the binary
partners. One observes a wide range of binary systems with periods ranging
from a few days to hundreds or thousands of years. In some cases the two stars
nearly touch one another, whereas in other systems they might be separated
by a distance greater than 100 AU.

Binary star systems are identified by the periodic variation of their po-
sition, velocity, spectra, or brightness. In some special circumstances, it is
possible to observe both binary partners. In most cases this is not possible
and the binary nature of the system must be deduced indirectly. We point out
that two stars that might appear very close in their angular separations need
not form a binary system. They might be widely separated from one another
along the radial direction and hence there may be no association between
them. The binary nature is identified by a periodic change in their properties.

13.1 Kinematics of a Binary Star System

A system of two gravitationally bound point objects can be solved analytically,
as described in Chapter 5. Here we apply this formalism to a binary star
system assuming that the two stars are very close to one another so that the
gravitational pull of other stars does not a have significant effect on their
motion relative to one another. An observer on either of these stars sees the
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other star moving in an elliptical orbit, described by

r =
r0

1− ǫ cos θ
, (13.1)

where r and θ are the plane polar coordinates in the plane of the ellipse. The
eccentricity of the ellipse, ǫ, and r0 are constants. An example of a binary
system is illustrated in Figure 13.1. Here we show the motion of two stars A
and B whose masses MA and MB , are in the ratio MA/MB = 2. The time
period T of the orbit is given by (Equation 5.9),

T 2 =
4π2a3

(MA +MB)G
, (13.2)

where 2a is the length of the major axis of the orbit of B about A.
With respect to their common center of mass, C in Figure 13.1, the two

stars also go in an elliptical orbit with the same ǫ but different r0. Hence the
major axis of their ellipses is different. Depending on the eccentricity, the orbit
of one of the stars may be contained entirely inside the orbit of the partner,
as in the case of Figure 13.1.

We next determine the motion of individual stars with respect to their
common center of mass. Let us assume that the center of mass of the two
stars lies at the origin of our coordinate system. Let ~rA and ~rB denote the
positions of the two stars. We denote the position of B relative to A by ~r, that
is,

~r = ~rB − ~rA . (13.3)

In Figure 13.1, the magnitudes of the vectors ~r, ~rA, and ~rB are denoted by
symbols L, LA, and LB at time t1. We can write this vector as

~r = r cos θx̂+ r sin θŷ , (13.4)

in terms of the plane polar coordinates (r, θ). Furthermore,

MB~rB +MA~rA = 0 , (13.5)

as the center of mass is located at the origin. The two equations, Equations
13.3 and 13.5, imply that

~rA = −~r MB

MA +MB
,

~rB = ~r
MA

MA +MB
. (13.6)

These equations show that the trajectory of the two stars about the center of
mass C of the binary is also elliptical, with the distance rB/rA = MA/MB .
We can express these as

rA =
r0A

1− ǫ cos θ
,

rB =
r0B

1− ǫ cos θ
, (13.7)
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where the eccentricities are the same and the ratio

r0A
r0B

=
MB

MA
. (13.8)

Let 2aA and 2aB , respectively, denote the lengths of the major axis of the
elliptical orbits of A and B about C. Their ratio is given by

aA
aB

=
MB

MA
. (13.9)

Furthermore, r0 = rA0 + rB0, which implies that

aA + aB = a . (13.10)
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FIGURE 13.1: The motion of two stars, A and B, under their mutual grav-
itational attraction. Each star orbits around their center of mass C in an
elliptical orbit. Here their masses, MA and MB respectively, are taken such
that MA = 2MB . The positions of the two stars at two different times t1
and t2 are shown. At time t1, the two stars lie at the two ends of the dashed
horizontal line. As viewed from C, the stars A and B are located at distances
LA and LB , respectively, at this time. The lengths of the major axes of the
orbits of A and B around C are 2aA and 2aB , respectively.
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In general, the orbital plane of a binary may not be perpendicular to the
line of sight. Let η be the inclination angle between the line of sight and the
unit vector, n̂, perpendicular to the plane of their trajectory. The observer will
see the trajectories of the two stars, projected onto a plane perpendicular to
the line of sight. The projected trajectory is also an ellipse, whose properties,
such as major and minor axes, eccentricity, are different from that of the real
trajectory.

The center of mass of a binary system moves in space due to the proper
motion of stars. Let us assume that it moves in a fixed direction with constant
speed. The resulting motion of the two stars is shown in Figure 13.2 for a
particular choice of parameters. Hence both stars show periodic change in
position superimposed on a linear motion in some direction.

A

B

FIGURE 13.2: The motion of a binary star system, A and B, across the
sky. The parameters are taken to be same as in Figure 13.1. The angle of
inclination is taken to be zero. The center of mass of the system moves in
some fixed direction due to proper motion. The oscillations arise due to the
motion of each star with respect to the center of mass.

13.2 Classification of Binary Stars

Binary stars are divided into various categories, depending on their observa-
tional properties. The brighter star in a binary system is called the primary
and the dimmer, the secondary. If we can observe both stars, the resulting
system is called a visual binary. This is possible only in a small fraction of
such systems. The angular separation between the two stars must be suffi-
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ciently large so that they can be resolved. In some cases the secondary is too
dim to be observed. If we can observe only one of the stars in a binary system,
then the resulting system is called an astrometric binary. In this case the
binary nature is deduced through the period changes in the position of the
observed star. Let us assume that in the example shown in Figure 13.2, star
B is not directly observable. The periodic motion of A, however, still allows
us to determine the period of the binary system.

In many cases we may not be able to directly observe the shift in position
of either of the stars. The binary nature is revealed by the periodic shift in the
spectral lines or the observed flux. The shift in spectral lines occurs due to the
Doppler effect as the two stars move back and forth along the line of sight.
Such a system is called a spectroscopic binary. If the spectrum of both
stars is observable, it is called a double-lined spectroscopic binary, otherwise
it is a single-lined spectroscopic binary.

A binary system that shows periodic variation of its total flux is called a
photometric binary. The variation is many cases arises when the two stars
periodically eclipse one another. These are called eclipsing binaries. Let us
first assume that the distance between stars is much larger than their radii. In
such cases, eclipses can happen only if the plane of the orbit is nearly parallel
to the line of sight, corresponding to an inclination angle of approximately 90o.
Hence, in this case, we are able to deduce the inclination angle of the system.
The luminosity of the system remains roughly constant for most of the period
but shows a sudden dip when the one of the stars eclipses the other. The
shape of the light curve depends on whether the eclipse is total or partial. In
the case of a total eclipse, one of the stars is completely eclipsed by the other,
larger star for a certain period of time. Hence, at a minimum, the light curve
may remain constant for a certain period of time, as shown in Figure 13.3.
One also sees a secondary eclipse when the larger star is partially eclipsed by
the smaller star. If the orbit is circular, the time interval τ between a primary
and the adjacent secondary eclipse is equal to T/2. The situation changes
considerably if the two stars are very close to one another. In such cases the
shape of a star may be distorted into an ellipsoidal due to the presence of the
binary partner. As this star revolves around the partner, we see its different
faces, which vary in brightness. In this case the brightness would show a time
dependence even if there is no eclipse.

Depending on the nature of the light curve, the photometric binaries are
further classified as Algol stars, β Lyrae stars, and W Ursae Majoris (W UMa)
stars. The flux variation for Algol type stars is caused primarily by eclipses.
The typical light curve is shown in Figure 13.3. The brightness remains approx-
imately constant between the eclipses. Furthermore, it is possible to clearly
identify the time interval over which the eclipse lasts. In some cases the sec-
ondary eclipse may not be visible. In β Lyrae stars and W UMa stars, the
distortion in shape is also responsible for the variation in brightness. Hence
the brightness varies even outside the eclipses and it not possible to identify
the beginning and end of the eclipses. For β Lyrae we observe the secondary
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minima in all cases. In the case of W UMa stars, the difference in depth
between the different minima is negligible.
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FIGURE 13.3: The light curve of an eclipsing binary star. The flux falls
dramatically during the primary eclipse, when the primary star is eclipsed by
the secondary. One also sees a smaller dip when the secondary is eclipsed by
a primary.
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FIGURE 13.4: The light curve of the Algol system. The apparent visual
magnitude, V , falls from 2.1 to 3.4 during the primary eclipse. The time
period of the system is 2 days, 20 hours, and 49 minutes.

Some prominent examples of binary systems are

• Castor: This was the first binary star system discovered. The discovery
was made by William Herschel around 1800. It is located at a distance of
about 15.6 pc in constellation Gemini; Figure 1.8. The orbital period of



Binary Stars 253

this system is about 467 years, and the angular separation between the
two stars about 6′′. Hence, it has still not completed one orbit since its
first observation as a binary system. Later, each star in this system was
found to be a spectroscopic binary. Furthermore, it is bound to another
faint binary system at an angular separation of about 72′′, making it a
sextuplet system.

• Sirius A and B: Sirius A is the brightest star in the sky. Its binary part-
ner, Sirius B, is a white dwarf, which can be seen only with a powerful
telescope. The existence of Sirius B was first deduced in 1844 by the
periodic variations in the position of Sirius A. Hence at the time of its
discovery, this system was an astrometric binary. The binary partner,
Sirius B, was discovered a few decades later, making this system a visual
binary. The time period of the system is 50.1 years.

• Mizar and Alcor: These two stars are very close to one another in
the handle of Ursa Major (see Figure 1.9). Mizar, the brighter of the
two stars, is itself a visual binary composed of Mizar A and Mizar B.
Both Mizar A and B are themselves spectroscopic binaries. In 1997,
astronomers were able to resolve the two stars in the Mizar A binary
system by interferometric measurements. Alcor is also an astrometric
binary. It has been suggested that the Alcor and Mizar systems might
be gravitationally bound to one another. If confirmed, this would make
this also a sextuplet system.

• Algol A and B: This is an eclipsing binary in the constellation Perseus
with a time period of about 2.9 days. The visual magnitude drops from
2.1 to 3.4 during the primary eclipse. The light curve is schematically
shown in Figure 13.4. This was the first eclipsing binary observed and
has fascinated astronomers for hundreds of years due to its rapid change
in flux. This rapid change also leads to its name, which is derived from
an Arabic word which means “The Demon’s Head.” The two stars, Algol
A and B, are very close to one another and cannot be resolved. From
the light curve it has been deduced that Algol A is a very hot and
bright star of spectral type B, whereas Algol B is a little larger and
much cooler and dimmer K type star. The Algol variables are named
after this system. This system also presents a paradox because Algol A
is more massive than B but still on the main sequence, whereas Algol B
has already entered the giant phase. This paradox has been resolved by
arguing that Algol A lost a part of its mass to its partner at a certain
stage in its evolution. We discuss this later in this chapter.
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13.3 Mass Determination

A major advantage of a binary system is that, in certain circumstances, it is
possible to determine the masses of the two stars. For example, consider a
visual binary at zero angle of inclination. By separating out its proper motion
from the oscillatory motion, we can determine the elliptical orbit of each
star relative to the center of mass. This allows measurement of the major axis
parameters, 2aA, 2aB , and 2a, of the two starsA andB (Figure 13.1). The time
period, T , can be measured for all binaries. Hence, using Equation 13.2, we can
determine (MA +MB), the sum of the masses of the two stars. Furthermore,
using Equation 13.9, we can obtain the ratio of the massesMB/MA. Knowing
their sum and ratio allows us to determine both MA and MB .

One complication that arises in the above analysis is that the binaries are
usually observed at a non-zero angle of inclination. For visual binaries it is
possible to determine this angle and hence deduce the true trajectory of the
stars. This deduction relies on the fact that, in a binary system, the trajectory
of star B, with respect to star A, is an ellipse with star A at one of its foci.
Here we explain the basic idea with a simple example.

B

A

FIGURE 13.5: The observed orbit of star B with respect to star A. In this
case, star A is located at the center of the ellipse, suggesting that the true
orbit is circular.

Let us assume that Figure 13.5 represents the observed orbit of B relative
to A. Here star A is at the center of the ellipse traversed by B. Because A
must be at one of the foci, this implies that the true orbit must be a circle
with diameter equal to the major axis, 2a, of the ellipse. Let 2b represent
the minor axes. The tilt angle η, discussed in more detail in Exercise 13.4,
can be determined by the relationship b = a cos η. With this information, the
orbits of both particles about the binary center of mass can be deduced and
used to determine their masses. In general, the true orbit is an ellipse and the
observed trajectory may appear more complicated. The star A may not even
lie along the major axis of the observed ellipse. Determining the tilt in these
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cases is more complicated and we do not go into such details here. In the case
of astrometric binaries, it is not possible to determine the tilt angle. Hence we
can only determine the sum of the masses, not the individual masses of the
two stars.

We next discuss spectroscopic binaries. Let ~vA and ~vB denote the orbital
velocities of two stars. By Doppler shift measurements, we can determine
their components along the line of sight, as well as the time period T . It
is not possible to determine the angle of inclination of the orbit. Using this
information we can extract some information about the mass of the binary.
The general case of elliptical orbit is complicated. Here we simplify our analysis
by assuming that the true orbit is circular. In this case the speeds of the two
stars, vA and vB , do not change with time. Let vAr denote the maximum value
of the component of ~vA along the line of sight. This component is positive when
star A is moving toward the observer. At a certain instant, this component
takes its maximum value, as discussed in Exercise 13.4. At the same instant,
star B has maximum speed directed outward along the line of sight. We denote
its magnitude, that is, absolute value, by vBr. These components are given by
(see Exercise 13.4),

vAr = vA sin η ,

vBr = vB sin η . (13.11)

Differentiating Equation 13.5, we find, at any instant,

MB~vB +MA~vA = 0 . (13.12)

This implies that
MB

MA
=
vAr

vBr
. (13.13)

The time period of the binary is related to orbital speed vA by

vA =
2πaA
T

. (13.14)

This leads to

vAr =
2πaA
T

sin η , (13.15)

along with a similar equation for vBr. Using these as well as Equations 13.10
and 13.13, we obtain

a =
vAr + vBr

sin η

T

2π
. (13.16)

Substituting this in Equation 13.2, we obtain

(MA +MB) sin
3 η = (vAr + vBr)

3 T

2πG
. (13.17)

This, along with Equation 13.13, allows determination ofMA sin3 η,MB sin3 η.
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The masses cannot be determined because the inclination angle is unknown.
For single-lined binaries, one can only determine the speed of one of the stars.
Hence only a certain combination of the masses and the inclination angle can
be determined.
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FIGURE 13.6: The position of star A at various stages during the primary
eclipse of the binary system. The center of star A traverses an angle φ about
the center of star B for the duration of the total eclipse. It traverses an angle
θ as it moves out of the occultation. The corresponding flux density seen
by a distant observer, from the beginning to the end of the eclipse, is also
shown. The time periods T1 and T2 correspond to total and partial eclipses,
respectively. (Adapted from F. H. Shu, The Physical Universe.)

If the spectroscopic binary also happens to be an eclipsing binary, such
that the distance between the two is much larger than their size, then the
angle of inclination is close to 90o. In this case the masses of the two stars can
be determined. Furthermore, the radii of the two stars can also determined in
the special case of Algol stars. In such systems, one can clearly identify the
beginning and the end of the eclipse. The orientation of stars A and B during
a primary eclipse is shown in Figure 13.6. We have assumed that the orbit is a
circle of radius a. The corresponding light curve is also shown in Figure 13.6.
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From the figure it is clear that

θ =
2RA

a
,

φ =
2RB − 2RA

a
, (13.18)

where RA and RB are the radii of the two stars, which are assumed to be
small compared to a. We also have

θ

2π
=

T1
T
,

φ

2π
=

T2
T
, (13.19)

where T1 and T2 are the time intervals corresponding to the total and par-
tial eclipse, shown in Figure 13.6. Using Equations 13.18 and 13.19, we can
determine the radii RA and RB . Hence a spectroscopic binary, which is also
an eclipsing binary, allows determination of the masses and the radii of both
stars in certain circumstances.

13.4 Mass Transfer in Binary Systems

In some binary systems, the distance between two stars is very small. In
such cases their mutual gravitational pull can strongly affect the properties
and evolution of the stars. Consider two stars A and B of masses MA and
MB revolving about their mutual center of mass with angular velocity ~ω. We
assume that the stars are spherical and their orbit circular. We are interested
in the force acting on a test particle located at point P , shown in Figure 13.7.
The distance between the two stars rA+rB = a. Let Φ denote the gravitational
potential at point P. It is defined as the gravitational potential energy of a
particle of unit mass. Hence the gravitational force on a particle of mass m is
given by

~F = −m~∇Φ . (13.20)

We work in a coordinate system rotating about C with angular velocity ~ω.
In this frame the stars lie along the x-axis. The gravitational potential at P,
including the effect due to centrifugal force, is given by

Φ = −GMA

r1
− GMB

r2
− 1

2
(~ω × ~r) · (~ω × ~r) . (13.21)

In order to calculate the total force, we also need to include the Coriolis force
if the particle has non-zero velocity in the rotating frame.
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FIGURE 13.7: The test particle P is located at position vector ~r with respect
to C, the center of mass of the binary system. Its position vectors relative to
stars A and B are ~r1 and ~r2, respectively. The stars A and B are located at
positions ~rA and ~rB with respect to C. They lie along the x-axis in the rotating
coordinate system.

Let us choose coordinates such that ~ω points in the z direction, that is,

~ω = ωẑ . (13.22)

We compute the potential, Φ, in the x− y plane. Let ~r, lying in x− y plane,
make an angle θ with respect to the x-axis. It can be expressed as

~r = r cos θx̂+ r sin θŷ . (13.23)

We obtain

Φ = −GMA

r1
− GMB

r2
− 1

2
ω2r2 . (13.24)

It is convenient to define

Φ0 =
G(MA +MB)

a
, (13.25)

which is the magnitude of the potential at distance a due to a star of mass
MA +MB . In Figure 13.8, we plot the potential, Φ/Φ0, in the x − y plane.
Here we have chosen MB/MA = 0.25. We notice the two deep potential wells
corresponding to the positions of the two stars. These are separated by a saddle
point. The name originates due to the resemblance of Φ near this point to the
saddle used to ride horses. In the x − y plane, the potential increases as we
move away from this point along the negative or positive y-axis. However, the
potential decreases along the x-axis. A saddle point corresponds to a position
of unstable equilibrium. Hence, a test particle at this point experiences zero
force but will move away and fall into one of the potential wells if perturbed
slightly.
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FIGURE 13.8: The gravitational potential, Φ/Φ0, for two stars of masses
MA and MB lying along the x-axis, such that MB/MA = 0.25. The center of
mass of the two stars is located at x = 0 and y = 0.

A contour plot of the potential is shown in Figure 13.9. The saddle point is
labeled as L1 on this plot. It is one of the Lagrange points, L1, of the binary
system. These are points of stable or unstable equilibrium in our rotating
coordinate system. At these points, ~F = −m~∇Φ = 0. Consider a particle of
small mass that is placed at one of these points and is revolving at angular
velocity ~ω along with the binary system. The particle will continue its motion
unless perturbed by some external influence. Hence satellites are often placed
at the Lagrange points of the Earth-Sun system. We also show the potential
along the x-axis in Figure 13.10. Here we show the location of two more
Lagrange points, L2 and L3. This also shows clearly the decrease in potential
as we move away from L1 along the x-axis. In Figure 13.11, we show the
behavior of the potential near the vicinity of L1 along the y and z axes. We
find that the potential increases as we move away from L1 in these directions.
Hence a particle placed at L1 will be stable to perturbations in the y−z plane.
If the perturbing force has any component in the x direction, the particle will
move away from this point.
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FIGURE 13.9: The contour plot of the gravitational potential, Φ/Φ0, for
the two stars of masses MA and MB described in Figure 13.8.
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FIGURE 13.10: The gravitational potential, Φ/Φ0, for the two stars of
masses MA and MB corresponding to Figure 13.8, as a function of the x
coordinate. The distance between the two stars is a. (Adapted from B. W.
Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics.)
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FIGURE 13.11: The gravitational potential, Φ/Φ0, for two stars of masses
MA and MB corresponding to Figure 13.8, along the y- and z-axis.

Let us now consider a binary system in which one of the stars starts to
leave the main sequence and its size begins to grow. This is shown in Figure
13.12, where we also show the contour that contains the Lagrange point L1

(see Figure 13.9). The tear-shaped region surrounding each of the stars, lying
within this contour, is called the Roche lobe. As star A begins to expand,
it eventually fills the Roche lobe. Its shape is no longer spherical due to the
influence of the binary partner, B. Once it fills the Roche lobe, material from A
starts to flow toward B through the Lagrange point. This matter spirals around
B, forming a disk-shaped region called the accretion disk and eventually falls
onto the surface of this star. Due to the transfer of mass from star A to B, the
evolution of both stars is affected significantly. This explains, for example, why
the more massive star, Algol A, in the Algol system is still on main sequence,
whereas Algol B is in the giant phase. As mentioned earlier, this can happen if
the distance between the two binary partners is relatively small. Such systems
are identifiable by their short time period.
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FIGURE 13.12: These figures illustrate the mass transfer from star A to its
binary partner B. As star A begins to expand, it fills up its Roche lobe, as
shown in the lower figure. Material from star A starts to flow toward B at the
Lagrange point L1.

Exercises

13.1 Assume that two stars of the same mass are moving in a circular orbit
around one another. Make a plot analogous to Figure 13.1. Repeat this
for the case where one is twice as heavy as the other.

13.2 Consider a binary star system of eccentricity 0.8. Make a rough sketch
of the trajectories of the two stars relative to their center of mass.

13.3 For single-lined spectroscopic binaries, we can find the speed vAr of
only one of the stars, besides the time period. Show that this allows
determination of only the combination

(mB sin η)
3

(mA +mB)2
=
v3AT

2πG
.

13.4 In this problem we will study the properties of a binary system whose
orbit is tilted relative to the line of sight. For simplicity we assume that
the true orbit is circular. We choose one of the stars as the origin O of
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our coordinate system. The binary partner moves in a circular orbit of
radius a about O. As explained in text, the observed orbit is an ellipse
with one of the stars at its center. The normal to the orbital plane, n̂,
makes an angle η with respect to the line of sight, as shown in Figure
13.13. This is called the tilt angle. We assume that n̂ lies in the x − y
plane and the line of sight is along the x-axis. In that case,

n̂ = cos ηx̂+ sin ηŷ .

The position vector of the star in orbit with respect to the origin is

~r = xx̂+ yŷ + zẑ .

(a) Show that the condition, n̂ · ~r = 0, leads to

x = −y tan η .
(b) Let a be the radius of the circle. Show that setting r2 = a2 leads to

y2

cos2 η
+ z2 = a2 .

This is the equation of the observed trajectory, that is, the true trajec-
tory projected onto the y − z plane.
(c) Let v and ω represent the linear and angular speeds of the star. We
can set z = a cos(ωt). Using the equations derived above, determine the
time dependence of y and x.
(d) Determine the velocity vector

~v =
d~r

dt
.

Verify that v2 = (aω)2.
(e) By Doppler shift we can measure vx, the x-component of the velocity
vector. Using the result in (d), verify that the maximum value of vx is
v sin η.

n
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O

FIGURE 13.13: A tilted circular orbit of a binary system. The normal to
the orbital plane is denoted as n̂ and the line of sight is along the x-axis.
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Chapter 14

The Milky Way
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Stars are not found in isolation but in huge clusters called galaxies. The Sun is
part of the Milky Way, which is a barred spiral galaxy and contains more than
200 billion stars. The main features of the Milky Way are the central bulge,
the disk, and the halo, as shown in Figure 1.2. The disk diameter is about 30
Kpc and disk thickness approximately equal to 1 Kpc. Surrounding the disk is
the galactic halo, which extends much beyond the disk. The Sun is located at
about 8.5 Kpc from the center. The density of stars is much higher in the disk
in comparison to the halo. It is also very high toward the center of the galaxy,
which is located in the constellation Sagittarius. Away from the city lights,
one can observe the disk as a white band stretching across the entire sky.
Nearly all the objects that are directly visible in the night sky lie within the
Milky Way. The only exception is the Andromeda galaxy, the closest bright
spiral galaxy, and the Large and Small Magellanic Clouds, which are irregular
dwarf galaxies and can be seen from the southern hemisphere.

Historically the first detailed study to map the Milky Way was done by
William Herschel. In order to determine the distribution of stars in three
dimensions, one needs to know their distance. Measurement of astronomical
distances is difficult. We will discuss the detailed process by which astronomers
have been able to map the Universe in the next section. Herschel side-stepped
this problem by making some simplifying assumptions. He essentially assumed
that if the number of stars in a particular direction is small, then the edge of
the Milky Way is close to us in that direction. By this procedure, Herschel,
in 1785, concluded that the Milky Way is a disk-like structure with the Sun
close to its center.

We now know that the Sun is very far from the center of the Milky Way.
Herschel came to the wrong conclusion because the real center is obscured
from our view by dust. Hence we are unable to directly observe the true
density of stars in this direction. The true extent of the Milky Way was first
determined by Harlow Shapley by mapping the globular clusters between the
years 1914 and 1919. These clusters are found predominantly in the halo, which

265
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is relatively free of dust. He was able to determine the distance of these objects
and deduced that they form a spherically symmetric distribution, whose center
is located very far away from the Sun. He concluded that this must be the true
center of the Milky Way, which must be much larger than what was previously
believed.

14.1 The Distance Ladder

The determination of astronomical distances played a crucial role in the dis-
covery of the true extent of the Milky Way. In this section we give a detailed
description of how these distances are estimated.

The distance of nearby stars can be measured by the parallax technique,
discussed in Section 3.3. For modern ground-based telescopes, this is useful
only for distances of about 100 parsec. For the measurement of larger dis-
tances, astronomers try to deduce the luminosity of an astronomical object.
Its distance can then be determined by the measurement of its flux. The ap-
plication of this procedure to measure distances of star clusters was discussed
in Section 6.8. In order to use this technique we need to calibrate the relation-
ship between luminosity and flux or, equivalently, the absolute and apparent
magnitude of a cluster. For this we require one cluster whose distance can
be measured by some other technique. The nearest star cluster is an open
cluster called Hyades, located at a distance of 47 parsec. Hence a lot of effort
was devoted to a measurement of its distance during the twentieth century.
At early times, ground-based telescopes were unable to measure its annual
parallax reliably. Hence astronomers had to invent an alternate technique.

Historically the distance of the Hyades cluster was determined by the mov-
ing cluster method. It is assumed that all stars within a cluster have the same
space velocity. This is reasonable since they are gravitationally bound to one
another. We can measure the radial velocities, Vr, of several stars using the
Doppler effect. We can also measure their proper motion µ. The transverse
component of their velocity Vt = µd, where d is the distance of the cluster.
Let us choose coordinates such that the center of the cluster lies on the z-axis.
For simplicity, let us assume that the velocities of all the stars in this clus-
ter point along the z-axis. These are shown schematically in Figure 14.1 by
vectors parallel to the z-axis. Consider a particular star located at an angle
θ to the z-axis. The transverse component of the velocity of this star points
toward the point C. Similarly, the transverse components of all stars point
toward C, called the point of convergence, as shown in Figure 14.2. Using the
standard relation between the two components of a vector,

tan θ =
Vt
Vr

, (14.1)
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and Vt = µd, we obtain

d =
Vr tan θ

µ
. (14.2)

A measurement of Vr, µ, and θ therefore yields an estimate of the distance.
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FIGURE 14.1: An illustration of the velocity vectors of stars within a cluster.
These vectors projected onto the celestial sphere converge to a point C.

C

FIGURE 14.2: The velocity vectors of stars within a cluster, projected onto
the celestial sphere, appear to converge to a point.
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In order to get a reliable estimate, it is necessary to measure these observ-
ables for several stars and obtain the best fit value of d. Here we have assumed
that the motion of the cluster is parallel to the line of sight. This is not true
in general. However, the principle and the resulting formula, Equation 14.2 is
valid in general. The reader can prove that as an exercise. Note that, in the
special case discussed above, the point of convergence lies within the cluster.
In general, this is not true.

Once the distance to the Hyades cluster was determined, it was used to
calibrate the relationship between color and the absolute magnitudes of the
main sequence stars within an open cluster. This can be used to determine
the distance to other clusters, as discussed in Section 6.8. This method can
be used to measure much larger distances. However, it could not be used to
determine the distance of globular clusters, which was required to determine
the true extent of the Milky Way. The problem is that globular clusters are
relatively old, and the stars in these clusters that are still on the main sequence
have relatively low mass. These main sequence stars are not very bright and
cannot be observed at such large distances.

In order to determine larger distances, astronomers use variable stars, such
as Cepheids and RR Lyrae variables. Cepheid variables are giant or super-giant
stars and show periodic variation of luminosity. Their periods typically range
from a day to about 100 days. We can measure their mean apparent magnitude
and period. The important point is that their mean luminosities or absolute
magnitudes,MV , are related to their period, T . The Period-Luminosity (P-L)
relationship can be expressed as

MV = −2.81 log(T )− 1.43 , (14.3)

where the period is expressed in days. Because the period can be directly
measured, their absolute magnitudes can be determined. Such objects, whose
absolute magnitudes can be deduced, are called standard candles. Using the
inverse square law, which in terms of magnitudes is given by Equation 4.24, we
can determine their distance. The RR Lyrae variables have properties similar
to Cepheids, but have smaller time period. In 1914, when Shapley attempted
to map the Milky Way, the period-luminosity relationship of Cepheids had
not been calibrated. Earlier, Henrietta Swan Leavitt had deduced the corre-
lation between period and luminosity by observations of 16 Cepheids from
Small Magellanic Cloud (SMC). However, she did not know the distance of
SMC. Hence she was unable to provide an absolute calibration. Due to their
relatively low abundance, they are found only at large distances. Hence, it was
not possible to measure the distance to any one of them by annual parallax.
Shapley solved this problem using a statistical technique to measure the dis-
tance of 11 Cepheid variables whose proper motions were known. The basic
idea is that a star at larger distance is expected to have smaller proper motion.
Hence one can assume an inverse relationship between these two observables
and deduce the proportionality constant by making a fit to data. Using this
procedure, he was able to calibrate the P-L relationship of Cepheids.
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There were actually several errors in Shapley’s observations. In particular,
he neglected interstellar absorption. Furthermore, he misidentified W Virginis
stars in globular clusters as Cepheid variables and applied his P-L relationship
to these in order to determine the distance of these clusters. Fortunately, the
different errors tended to cancel one another and his estimates of the distances
to globular clusters were approximately correct. Hence he was able to correctly
infer the true size of the Milky Way.

The P-L relationship of Cepheid variables also proved useful for finding
objects beyond the Milky Way. Using this technique, Edwin Hubble, in 1923,
estimated that the distance of the nebula M31 was 280 Kpc. Due to the
errors in calibration of Cepheid P-L relationship, this was underestimated by
a factor of about 3. This nebula is the next nearest prominent galaxy, called
Andromeda. Its distance is now known to be 778± 33 Kpc.

The Cepheid variables are not bright enough to go much beyond a few
Mpc. In order to go to larger distances, one needs brighter standard can-
dles. One possibility is to use the brightest stars in a galaxy. Statistically,
their brightness appears to be same in all the nearby galaxies and hence
these can act as standard candles. This method is feasible for distances up to
about 10 Mpc. Another possibility is to use the luminosities of globular clus-
ters. This requires observation of the magnitudes of many globular clusters
within a galaxy. These are used to determine the Globular Cluster Luminosity
Function (GCLF), φ(M), which is the probability to find a globular cluster
with absolute magnitude M . For blue magnitude MB , this shows a peak at
MB ≈ −6.5. For a distant galaxy we can determine the distribution of appar-
ent magnitudes, mB , of globular clusters. This can be used to determine its
distance because the absolute magnitude of the peak position is known. This
method can be used to measure distances less than 100 Mpc.

Another useful method is the Tully–Fisher relationship for spiral galaxies.
This relates the luminosity of a galaxy to its rotational velocity and will be
discussed in more detail in the next chapter. The luminosity of a distant galaxy
can, therefore, be deduced from the observation of its rotational speed. This
method can be used for distances larger than 100 Mpc.

For the largest distances, the most effective method has been the light
curve of Type Ia supernovae. These originate in a binary star system in which
one of the stars is a white dwarf. This star accretes mass from its binary
partner. Once its mass exceeds the Chandrasekhar limit (1.4 solar masses),
it undergoes a supernova explosion. Recall that this is the maximum possible
value of the mass of a white dwarf. Beyond this value it becomes unstable.
The supernova luminosity rises quickly and reaches its peak value within a
few days. This is followed by a slow decline. A typical light curve for such
a supernova is shown in Figure 14.3. The important point is that the peak
luminosity of all Type Ia supernovae is approximately the same. This is un-
derstandable because, in all cases, the mass of the white dwarf that explodes
is the same. Hence the nature of the supernova explosion is the same in all
cases. The peak absolute visual magnitudes of all such supernovae is approx-
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imately −19.3. There is a small spread in these values. It turns out that the
peak value is related to the width of the light curve. Using this relationship
and the measured value of the width, the peak value can be fixed with higher
accuracy. Hence these supernovae act as standard candles and their distance
can be determined.
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FIGURE 14.3: The light curve of the Type Ia supernova SN1999dq. The
x-axis shows the time in days and the y-axis the apparent V magnitude.

14.2 Distribution of Matter in the Milky Way

The main components of the Milky Way are the thin disk, the halo, and
the central bulge, as illustrated in Figure 1.2. The density of matter is much
higher in the disk in comparison to the halo. The disk contains stars that are
relatively young compared to those in the halo. It also contains a considerable
amount of gas and dust and many regions of active star formation. In contrast,
the halo contains negligible gas and dust and hence no star formation.

The structure of the disk depends on the observed component. The gas and
dust lie within a region that has a thickness of about 100 pc. New stars take
birth in this region. Hence it also contains a large number of OB associations.
If we map the distribution of low mass main sequence stars, such as the Sun,
the disk appears to have a thickness of about 1 Kpc.
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FIGURE 14.4: An illustration of the known spiral arms of the Milky Way
galaxy. (Image courtesy of NASA/JPL-Caltech.)

A very interesting feature of the disk is the spiral arms. If we observe
the OB associations close to the Sun, we find that they are not distributed
uniformly within the disk but rather are concentrated in regions that are
identified as parts of the spiral arms of our galaxy. The Sun itself lies on the
inner edge of the Orion–Cygnus arm. We observe the Carina–Sagittarius Arm
toward the center of the galaxy and the Perseus arm in the opposite direction.
We cannot map the disk at large distances at visual frequencies due to the
presence of the intervening dust. At larger distances, the structure of the disk
can be determined by radio observations of the 21 cm spectral line emitted by
neutral hydrogen. The gas also undergoes rotation around the galactic center.
Hence the gas at different distances has different radial velocities. This velocity
component can be determined by measuring the Doppler shift of the 21 cm
line. These observations allow one to map the entire disk and obtain the full
extent of the spiral arms, as explained below. An illustration of the different
arms is shown in Figure 14.4. We point out that the detailed spiral structure
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of the galaxy is not well known and different astronomers do not agree on the
precise nature of these arms.

There is considerable evidence that suggests the presence of a supermassive
black hole, with mass about a million times the mass of the Sun, at the center
of the Milky Way. This region is called Sagittarius A*. The mass is deduced
from measurements of the stellar velocities in this region. Observations suggest
that the density of this region is sufficiently high that it would collapse to form
a black hole during the lifetime of the Milky Way. Besides the measurement
of mass, other observations such as radio emission are also consistent with the
presence of a black hole.

The luminosity distribution of stars in the Milky Way is characterized by
the luminosity function, φ(L), where L is the stellar luminosity. Consider a
certain region of the Milky Way whose volume is V . We count the number of
stars in this volume whose luminosities lie between L and L + dL. Dividing
this number by V and dL gives us the luminosity function, φ(L). It is equal to
the number of stars per unit luminosity, per unit volume. It is convenient to
define this function in terms of the absolute magnitudeM . Hence φ(M)dM is
the number density of stars with absolute magnitudes lying between M and
M + dM . Observationally, it is determined by counting the number of stars
that have absolute magnitudes betweenM −1/2 andM +1/2 in the region of
interest and dividing the resulting number by the total volume. This function
can be determined reliably only in the neighborhood of the Sun.

The luminosity function is important for studying the structure of the
Milky Way. In general, it may have a complicated dependence on position.
However, as a first approximation, it may be reasonable to assume that it is
constant within a particular component of the galaxy. For example, it may be
uniform within the disk or the halo. Hence its measurement in our neighbor-
hood may provide a good approximation of its value within the disk.

Let n(~r ) be the number density of stars at position ~r. Let us suppose that
we are interested in obtaining it in the galactic disk. Let dN(m, l, b) be the
observed number of stars in the direction (l, b) within the solid angle ∆Ω and
the radial interval (r, r + dr). Their apparent magnitudes lie in the interval
(m − 1/2,m + 1/2). We can express dN(m, l, b) in terms of the luminosity
function, by the equation

dN(m, l, b) = n(~r )
φ(M)

n0(~r )
d3r , (14.4)

where n0(~r ) is the number density in the neighborhood of the Sun and d3r =
r2dr∆Ω. We need to divide by n0 because φ(M) is the number of stars per
unit volume in our neighborhood. We define the relative number density D(~r )
by the relationship

D(~r ) =
n(~r )

n0(~r )
. (14.5)

We can express the absolute magnitude of a star in terms of its apparent
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magnitude by using Equation 7.18. Hence the number of stars N(m, l, b) in the
direction (l, b) with apparent magnitude lying in the range (m−1/2,m+1/2)
can be expressed as

N(m, l, b) =

∫ ∞

0

D(~r )φ

(

m− 5 log
r

10 pc
−A

)

r2dr∆Ω . (14.6)

This equation, first obtained by von Seeliger, is called the fundamental equa-
tion of stellar statistics. It allows one to deduce the number density of stars
in any region of the Milky Way by observing N(m, l, b) and the luminosity
function. As explained earlier, we can determine the luminosity function of
the stars in our neighborhood, which provides a reasonable approximation of
its value within the disk.

14.3 Differential Rotation of the Milky Way

The stars, along with the gas and dust in the Milky Way disk, rotate about
the center of the galaxy in nearly circular orbits. The rotation is differential,
that is, the disk does not rotate as a rigid body. The angular speed depends
on the distance from the center. Before studying this in detail, we point out
that the motion of stars in the galactic halo is very different from that in the
disk. In general, the halo stars display elliptical orbits with high eccentricity.

The differential rotation of the disk is not observable if we consider stars in
our neighborhood, that is, located at distances less than 100 pc from us. These
stars appear to be moving in random directions with speeds ranging from a
few Km/sec to more than 100 Km/sec. It is convenient to define a reference
frame, called the Local Standard of Rest (LSR), in which the mean velocity of
all stars in our neighborhood, including the Sun, is zero. The velocity of a star
with respect to the LSR is called its peculiar velocity. We can divide the entire
disk into similar domains of area roughly equal to (100 pc)2 and determine
the mean velocity vector of stars within each domain. It is this mean motion
of different domains that shows circular motion around the galactic center.

Consider a star P in the galactic disk at distance R from the center,
located at galactic latitude l, as shown in Figure 14.5. Let us assume that it
rotates about the center in a circular orbit with angular speed ω(R). We next
determine its radial and tangential velocities, as observed from the Sun. Let
us denote these by symbols vr and vt, respectively. Let the linear velocity of
the star and the Sun be ~V and ~VS , respectively, relative to the galactic center.
We clarify that ~VS represents the velocity of the Sun after subtracting out
its peculiar motion relative to the LSR. Hence it really is the velocity of the
LSR relative to the galactic center. Similarly, ~V is the mean velocity vector
of another group (or domain) of stars located at mean distance R from the
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galactic center. The magnitudes of these velocity vectors are given by

V = ωR ,

VS = ωSRS , (14.7)

where ωS is the angular speed of the Sun and RS its distance from the center.
The distance of the star P from the Sun along the line of sight is r. The
velocity of the star with respect to the Sun is

~v = ~V − ~VS . (14.8)

Let θ be the angle between the line of sight and the radius R, as shown in
Figure 14.5. The radial and tangential speeds of the star, with respect to the
Sun, are

vr = V sin(θ)− VS sin(l) ,

vt = V cos(θ)− VS cos(l) , (14.9)

respectively. We see from Figure 14.5 that

R sin(θ) = RS sin(l) , (14.10)

r = RS cos(l)−R cos(θ) . (14.11)

R S

O

Sun

l
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R
θ

line of sight
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V

FIGURE 14.5: A star P at distance R from the center rotates around the
galactic center O with angular speed ω. Its linear velocity is ~V .
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Hence, using Equations 14.9 and 14.7, we obtain

vr = (ω − ωS)RS sin(l) ,

vt = (ω − ωS)RS cos(l)− ωr . (14.12)

Assuming that the star P is not very far away from the Sun, we expect that
ω ≈ ωS . Hence we can expand ω(R) by making a Taylor expansion. We obtain

ω(R) = ωS + (R−RS)
dω

dR

∣

∣

∣

∣

∣

R=RS

. (14.13)

Furthermore, R ≈ RS >> r. This implies, using Equations 14.10 and 14.11,
that

RS ≈ R+ r cos(l) . (14.14)
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FIGURE 14.6: The radial speed vr and proper motion µ of stars in the
galactic disk, as a function of the galactic latitude, due to their differential
rotation about the center of the Milky Way. These curves are obtained using
the measured values of the Oort constants.
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Hence we obtain

vr = Ar sin(2l) ,

vt = Ar cos(2l) +Br , (14.15)

where A and B are Oort constants, defined as

A = −RS

2

dω

dR

∣

∣

∣

∣

∣

R=RS

,

B = −
(

ωS +
RS

2

dω

dR

∣

∣

∣

∣

∣

R=RS

)

. (14.16)

These constants contain information about the motion of stars in the neigh-
borhood of the Sun. The constant A is directly proportional to the rate of
change of ω with R. It would be zero if the galaxy rotates as a rigid body.
The constant (A − B) is equal to ωS , the angular speed of the Sun or, more
precisely, the local standard of rest (LSR) about the galactic center. These
constants can be determined by observing the radial and proper motions of
stars. The proper motion, µ = vt/r, is given by

µ = A cos(2l) +B . (14.17)

The observed values of these constants, using the Hipparcos satellite data, are

A = 14.82± 0.84 Km s−1 Kpc−1 ,

B = −12.37± 0.64 Km s−1 Kpc−1 . (14.18)

The fact that A 6= 0 directly implies that the galaxy does not rotate as a rigid
body. We also find that ωS = A − B = 27.19 Km/(s·Kpc). The Sun is at a
distance of about 8.3 Kpc from the galactic center. Hence this leads to a linear
speed of Sun, VS ≈ 226 Km/s. In units of radians per year, ωS = 2.8× 10−8.
This implies that the time period of rotation of the Sun around the galactic
center is approximately 2.3 × 108 years. In Figure 14.6, we plot the radial
speeds and proper motions of stars as a function of the galactic longitude
using these observed values.

14.4 Mapping the Galactic Disk with Radio Waves

As we have mentioned above, radio waves can travel large distances within
the Milky Way and hence can be used to map the galactic disk. The mapping
is done mainly by using the 21 cm spectral line that is emitted by atomic
hydrogen, due to its hyperfine splitting.
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The basic idea is explained in Figure 14.7. If we look in any direction, we
are likely to see several different hydrogen clouds located at different distances.
For illustration, we show four different clouds A, B, C, and D along the line
of sight, at the galactic longitude l, on the galactic disk. The cloud B is closest
to the galactic center O. We assume that the angular speed (ω) of the galaxy

VS

R S

R B O

Sun

l

line of sight

A

B

C

D

FIGURE 14.7: An illustration of a series of hydrogen clouds A, B, C, and D
lying along the line of sight, at galactic longitude l, on the galactic disk. These
clouds rotate about the galactic center with speeds given by ω(R), where R is
the distance from the center. The cloud B is closest to the galactic center and
has maximum value of ω. This leads to the largest radial speed, vr, relative
to the Sun. (Adapted from H. Karttunen et al., Fundamental Astronomy.)
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FIGURE 14.8: The radial speed vr of a hydrogen cloud as a function of
distance (r) from the Sun at fixed galactic longitude l for the range 0 < l <
90o.



278 An Introduction to Astronomy and Astrophysics

depends only on R, that is,
ω = ω(R) , (14.19)

where R is the distance from the center. Observations show that ω(R) de-
creases with R. A rough approximation to this relationship is obtained by
noting that the linear speed of rotation is approximately constant beyond
a few Kpc from the center. Hence at such distances, we can assume that
ω(R) = V (R)/R ≈ V0/R, where V0 is a constant. This is of course a very
rough approximation and is being used here only for illustration. Using Equa-
tion 14.12, for 0 < l < 90o, we see that at fixed l, as we move away from
the Sun, vr first increases and then starts to decrease with r. Here r is the
distance of the cloud from the Sun. This dependence of vr on r is illustrated
in Figure 14.8. The maximum value of radial speed corresponds to the hy-
drogen cloud located at B in Figure 14.7. For 90o < l < 270o, the line of
sight will only encounter clouds at distances larger than RS from the galactic
center, as can be seen from Figure 14.7. For such clouds, ω(R) < ωS . In this
case, Equation 14.12 implies that vr < 0 and continues to decrease monotoni-
cally with r. These clouds appear to move toward the observer. For the range
270o < l < 360o (or equivalently −90o < l < 0o), the radial speed vr first
decreases, that is, becomes negative, reaches a minimum, and then starts to
increase with r. This behavior is exactly opposite (or inverted) in comparison
to that seen in Figure 14.8.

The important point is that if we can identify the cloud with the maximum
speed, then we know that it is located at the minimum distance from the Sun.
By geometry, we deduce that its distance RB = RS sin(l). The speed of the
cloud can be deduced by the Doppler shift of its 21 cm spectral line. Recall

vr (Km/s)

F
lu

x

D

A+C

B

−40 −20  0  20  40  60  80  100  120  140

FIGURE 14.9: An illustration of the line profile due to the radiation received
from clouds A, B, C and D along the line of sight at fixed galactic longitude l.
On the x-axis we show the radial speed of the cloud, which has been deduced
from the observed Doppler shifted wavelength of the 21 cm hydrogen line, as
explained in text.



The Milky Way 279

that if the source is moving away from us with speed, vr, then the shift in the
wavelength of its spectral line is ∆λ/λ0 = vr/c, where λ0 is the wavelength
observed by an observer at rest relative to the source. Hence if a cloud is
moving away from us, then we expect to see a Lorentzian intensity profile
with the peak intensity at the wavelength λ = λ0(1+vr/c). If we have several
different clouds at different distances along the line of sight, then the spectrum
will be a sum of the line profiles due to individual clouds. This is schematically
illustrated in Figure 14.9, where we show the observed spectrum assuming
only four clouds, A, B, C, D. On the x-axis we show vr as deduced from
the relationship λ = λ0(1 + vr/c). By identifying the cloud with the largest
Doppler shift and hence largest vr, we can deduce the angular speed, ω, at the
distance RB . The angular speed can be determined by using Equation 14.12.
This procedure repeated for all l allows us to determine ω(R), that is, ω as
a function of distance from the galactic center. Once this is determined, we
can deduce the distance of different clouds from the galactic center by their
observed values of vr. Their observed flux then directly leads to the intensity
profile of the galactic disk.

14.5 Formation of the Spiral Arms

The spiral arms are regions of higher density of matter in the disk of spiral
galaxies, such as the Milky Way. Here we briefly discuss how these structures
are formed and how they remain preserved over many cycles of rotation of
these galaxies. One might naively expect that the spiral structure rotates at
the same rate as the stars. However, if this were true, then, due to differen-
tial rotation, the spiral will wind around the center in a few complete cycles
of rotation of the galaxy. This is illustrated in Figure 14.10. A more likely
possibility is that the individual stars move at higher speeds compared with
the motion of the spiral pattern. This may be understood by an analogy, de-
scribed in The Physical Universe, An introduction to Astronomy by Frank H.
Shu. Consider a highway with two lanes, such that one of the lanes is broken
down at some point. As cars approach this point, they will slow down, slowly
change lanes, and move on. Furthermore, one will observe a small clustering of
cars in the vicinity of this point. This cluster can be compared with the spiral
pattern. In this case, the cluster does not move at all, while the individual
cars keep moving in and out of this region. In a similar manner, a star slows
down while crossing a spiral arm. Eventually it completes its motion through
the arm and moves on. Hence the spiral arm is composed of different stars at
different times but its shape remains similar. The spiral pattern rotates at a
much slower rate compared with individual stars.

The formation of spiral patterns is best described by the density wave
theory, originally proposed by Lin and Shu in 1963. The basic idea is that the
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disk does not have exact axial symmetry. For example, the density may be a
little higher at some azimuthal angles φ compared to the mean density. Hence,
the force acting on a star located on the disk depends also on the azimuthal
angle φ, besides its dependence on the radius r. We may assume that initially
the φ-dependent part of the force is a small perturbation. Depending on the
nature of this perturbation, the azimuthal asymmetry may be enhanced with
time. This means that the density contrast may start to increase, leading to a
further increase in the φ-dependent perturbating force and so on. This process
may eventually lead to the formation of spiral arms.

A

B

C

FIGURE 14.10: Consider three stars, A, B, and C lying on a spiral arm.
Let us assume that star A moves at angular speed twice that of C due to
differential rotation of the galaxy. Hence in a time interval taken by A to
complete two rotation cycles, C would have completed just one. Hence the
spiral pattern will form a complete loop that will be further distorted with
more cycles of rotation. The observed spirals do not show such behavior. This
indicates that the spiral pattern itself does not rotate with the same speed as
the individual stars.

Exercises

14.1 Consider a cluster of stars located along the z-axis. The velocity vectors
of stars in three-dimensional space are shown in Figure 14.11. In general,
the point of convergence of these velocity vectors, projected onto the
celestial sphere, lies outside the cluster. This point is labeled C in Figure
14.11. Show that the distance to the cluster is given by the Equation
14.11, even in this general case.

14.2 Prove the approximate Equation 14.14, by using Equation 14.10. Using
this, obtain the formulae for vr and vt given in Equation 14.15. You can
use

dω

dR
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∣

∣
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A =
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∣

∣

∣

∣
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)

. (14.21)

14.3 Using the values of the Oort constants, Equation 14.18, determine the
angular speed of the Sun.

14.4 Determine the Oort constants assuming that (a) the Milky Way rotates
as a rigid disk, and (b) the angular speed of stars about the galactic
center follows Kepler’s law.

14.5 Supernovae Type Ia play a very useful role in cosmology because they
are standard candles and can be observed at very large distances due
to their brightness. Their peak absolute visual magnitude MV ≈ −19.3.
The limiting apparent magnitude that the Hubble space telescope can
detect is V = 31. (a) Ignoring interstellar extinction, find the maxi-
mum distance over which it can observe such a supernova. Note that
this calculation will produce an overestimate because we have ignored
extinction and also because the peak will be shifted to lower frequencies
due to the cosmological redshift. (b) Repeat this exercise for a typi-
cal galaxy such as the Milky Way, which has an absolute magnitude of
−20.5.
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FIGURE 14.11: A schematic illustration of velocity vectors of stars within
a cluster. These vectors projected onto the celestial sphere converge to a point
C.
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Galaxies are gravitationally bound systems that consist of a huge number of
stars. The number of stars in a galaxy vary over a wide range, roughly 107

to 1014. For example, the Milky Way galaxy contains more than 200 billion
stars. There are at least 100 billion galaxies in the Universe. The galaxies
themselves group together to form larger structures called groups or clusters
of galaxies. The largest structures seen in the Universe are called superclusters,
which contain a large number of clusters. The scale of the largest supercluster
is found to be about 100 Mpc. For comparison, the size of the observable
Universe is a few Gpc.

The galaxies occur in a wide range of shapes and sizes. They are broadly
divided into four different categories called elliptical, lenticular, normal spirals,
and barred spirals. Each of these is further subdivided into different types.
For example, the elliptical galaxies are classified into different classes labeled
E0, E1, E2, etc., depending on their eccentricity. Let the major and minor
axes of an elliptical galaxy be a and b, respectively. It is classified as En,
where,

n = 10(1− b/a) .

Hence an E0 galaxy appears circular whereas an E7 would be highly eccentric.
These different classes can be depicted in a tuning fork diagram, Figure 15.1,
originally due to Hubble.

In Figure 15.2, we show the image of the elliptical galaxy NGC 1132. An
image of a normal spiral and barred spiral galaxy is shown in Figures 15.3
and 15.4, respectively. A barred spiral, such as the Milky Way, displays a
bar-like structure, as shown in Figure 15.4. The spiral galaxies are classified
into Sa, Sb, Sc, depending on the nature of the spiral arms and the size of
the central bulge. A spiral galaxy of type Sa has broad, tightly wound spiral
arms and a large central bulge. In contrast, a type Sc galaxy has a smaller
central bulge and an open spiral pattern. Its spiral arms are narrower and well
defined in comparison to a galaxy of type Sa. Similarly, we have a division of
barred spirals into SBa, SBb, SBc, etc. The lenticular galaxies, SO or SB0,
have structures intermediate between elliptical and spiral.
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FIGURE 15.1: The Hubble classification of galaxies. The intermediate galax-
ies, SO and SBO, are called lenticular.

FIGURE 15.2: The elliptical galaxy NGC 1132 observed by the Hub-
ble telescope. (Image courtesy of NASA, ESA, and the Hubble Heritage
(STScI/AURA)-ESA/Hubble Collaboration.)
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FIGURE 15.3: The spiral galaxy M100 observed by the Hubble telescope.
(Image courtesy of NASA, STScI.)

FIGURE 15.4: The barred spiral galaxy NGC 1300 observed by the Hubble
telescope. (Image courtesy of NASA, ESA, and The Hubble Heritage Team
(STScI/AURA).)

The Hubble classification is purely empirical. However, it was earlier
thought to represent the different stages of evolution of galaxies. It was be-
lieved that galaxies evolved from elliptical to normal spirals or barred spirals.
Hence, elliptical galaxies were designated as early type and spirals and barred
spirals as late types. This interpretation is false; however, this terminology is
still used occasionally.

Besides these galaxies, we also see other types referred to as irregular
galaxies and dwarf galaxies. As the name suggests, an irregular galaxy does
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not exhibit a simple geometric shape. It need not have some of the structures
associated with other galaxies, such as a central bulge. These galaxies are
most likely formed out of collisions of two galaxies. A dwarf galaxy is much
smaller in size compared to a spiral or an elliptical galaxy. Some prominent
examples are the Large Magellanic Cloud and the Small Magellanic Cloud in
our astrophysical neighborhood, located, respectively, at a distance of 50 Kpc
and 61 Kpc from Earth.

15.1 Elliptical Galaxies

Elliptical galaxies show a relatively simple structure. A typical example is
shown in Figure 15.2. They appear as elliptical structures with a monotonic
decrease in the density of stars as we move outward from the center. In most
cases, they contain negligible interstellar matter, such as gas or dust, and
hence there is no new star formation. The stars are very old and formed at
the same time. Hence these galaxies are dominated by low mass stars and
display a yellow-red color. These galaxies are more likely to be found near the
centers of galactic clusters. Within our astrophysical neighborhood, roughly
10 to 15 % of the galaxies are elliptical.

x

z

ya

b

c

FIGURE 15.5: An ellipsoidal with the three principal axes of length 2a, 2b,
and 2c.

Their appearance is determined by their actual three dimensional shape
as well as their angle of projection on the sky. Their true shape is roughly
ellipsoidal, illustrated in Figure 15.5. In a Cartesian coordinate system, with
the origin located at the center of the galaxy, the three-dimensional shape can
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be represented by the equation

x2

a2
+
y2

b2
+
z2

c2
= 1 . (15.1)

We expect most elliptical galaxies to be either oblate (a = b > c) or triaxial
(a > b > c). An oblate galaxy would appear circular, that is, would fall in
class E0, if the line of sight is parallel to the z-axis. If viewed along the x− y
plane, it would appear elliptical, with semi-major and semi-minor axes equal
to a and c, respectively. For other angles of observations, it would appear as
an ellipse of different eccentricities.

These galaxies show practically no rotation and the stars move in random
directions. Hence the flattened structure, observed in many elliptical galaxies,
is not caused by rotation. This is in contrast to many astrophysical systems,
such as the solar system, spiral galaxies, etc., whose disks are formed due to
their rotation. The shape of the galaxy may be partially determined by the
process of its formation and subsequent evolution, as discussed below. We can
measure the distribution of velocities along the line of sight by observation
of a spectral line profile. Let us consider a particular spectral line centered
at frequency ν0. The width of this line would be different for different stars.
When we observe along the line of sight we obtain the integrated line profile
for a large number of stars. The peak frequency for different stars is Doppler
shifted due to their velocity component along the direction of observation.
Hence the observed line profile is broadened due to the random motion of
stars, as illustrated in Figure 15.6. The observed width of a spectral line,
therefore, carries information about the distribution of velocities of different
stars along the line of sight. This can be used to measure the velocity dispersion
σ, that is, the standard deviation of the velocity component in the direction
of observation.

One observes elliptical galaxies over a wide range of sizes and masses.
The dwarf elliptical galaxies may be comparable to a globular cluster with
a size of order 100 pc and contain about 107 stars. At the other end, we
have ellipticals with size of order 100 Kpc and mass larger than 1013 solar
masses. For example, the supergiant elliptical galaxy IC1101 is 2,000 times
more massive compared to the Milky Way.

These galaxies are most likely formed by the merger of two or more spi-
ral galaxies. Such collisions between different galaxies is much more likely in
comparison to collisions between different stars because they are more tightly
packed within galaxy clusters. When two galaxies collide, most of the stars
simply pass through unobstructed due to their small size. Simulations show
that as these galaxies merge, they tend to lose most of their gas. Furthermore,
the pressure exerted by the two galaxies on one another triggers star forma-
tion. This tends to further disperse the gas and dust present in the merging
galaxies. Hence at the end of this process, the final galaxy is relatively devoid
of interstellar medium and further star formation is not possible. It is clear
that the shape of the final galaxy will be determined by the nature of the
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merger between the two galaxies. Alternatively, elliptical galaxies may have
formed due to the collapse of a cloud with very small angular momentum.

The surface brightness of ellipticals shows the following dependence on
distance from the center,

I(r) = I0 exp
(

αr1/4
)

, (15.2)

where I(r) is the surface brightness at distance r from the center measured in
units of LSun/pc

2, I0 is the brightness at the center, and α is a constant. This is
called de Voucouler’s law. The parameter I0 cannot be extracted very reliably
due to constraints imposed by seeing. Hence it is more useful to express this
law in a different form:

I(r) = Ie exp

(

−7.67

[

(

r

re

)1/4

− 1

])

. (15.3)

Here re takes values in the range 1 to 10 Kpc. For a circular galaxy, re is the
radius of the disk that emits half of the total radiation of the galaxy and Ie
is the surface brightness at this distance. In general, Ie is the brightness at
the isophote that encloses a region emitting half of the total luminosity of the
galaxy.

The luminosity of elliptical galaxies shows an approximate dependence on
their mean velocity dispersion σ given by,

L ∝ σ4 . (15.4)
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FIGURE 15.6: A spectral line appears broadened due to random velocities
of stars in an elliptical galaxy. The left figure shows a typical velocity distri-
bution, P (V ), of stars. Here V refers to the component of velocity along the
line of sight. In Figure (b), the dashed line shows the absorption spectral line
peaked at ν0 for a particular star. The solid line shows the total spectral line
due to all the stars along the line of sight. These stars have different veloc-
ity components along the line of sight and their peak positions are Doppler
shifted, leading to a broadening of the line profile. The normalizations of both
lines in (b) have been chosen arbitrarily.
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This is called the Faber–Jackson relation. This relationship can be used to de-
duce the distance of these galaxies because their luminosities can be estimated
by measurements of σ. This relationship follows from the virial theorem and
the empirical fact that the surface brightness Ie at radius re of most elliptical
galaxies is roughly the same. However, all elliptical galaxies do not obey this
relationship.

15.2 Spiral Galaxies

The spiral galaxies contain a central bulge and a disk that extends over a
much larger distance. The central bulge is similar in shape to an elliptical
galaxy and has a very high concentration of stars. However, in contrast to
an elliptical galaxy, the central bulge along with the entire galaxy undergo
rotation. The disk thickness is typically about 1 Kpc and its diameter a few
tens of Kpc. The spiral galaxies contain considerable amount of gas, which
lies along a thin disk whose thickness is typically about 200 pc. The density
of gas in this disk is nearly uniform. For example, the Milky Way is a spiral
galaxy with a disk diameter of about 30 Kpc. The mass of gas and dust in
the Milky Way is about 15% of its total mass in visible matter.

A striking feature of these galaxies is the spiral arms, which are located in
their disks. These arms have a higher density of gas and dust and are sites of
active star formation. They appear brighter in comparison to the rest of the
disk due to the newly formed bright O, B stars. Hence spiral galaxies have

FIGURE 15.7: The sense of rotation of spiral galaxies in most cases is such
that the spiral arms are trailing.
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a much higher proportion of young stars in contrast to ellipticals, which are
dominated by old stars. An image of a spiral galaxy is shown in Figure 15.3.
The spiral structure suggests that the sense of rotation of these galaxies is
most likely such that the spiral arms trail, as shown in Figure 15.7. However,
a small percentage of these galaxies also show the opposite sense of rotation.
The formation of spiral arms is best described by the density wave theory,
discussed in Section 14.5.

Many spiral galaxies display a bar-like structure near the center. These are
classified as barred spirals. An example of such a galaxy is shown in Figure
15.4. Many galaxies such as the Milky Way, which were earlier believed to be
pure spirals, were later found to be barred spirals. Roughly two-thirds of all
spirals are found to be barred. The spirals are found to be the most abundant
type of galaxies. It is believed they slowly use up their gas and dust in the
process of star formation and evolve into lenticular galaxies, S0 or SB0.

The surface brightness of the disk, I(r), at a distance r from the center
can be expressed as

I(r) = I0e
−r/r0 , (15.5)

where r0 =1–5 Kpc and I0 is the brightness at the center in units of luminosity
per pc2. Observationally the central brightness is given in units of magnitude
per unit solid angle. For example, the B magnitude of the central region takes
a wide range of values but is generally fainter than B ∼ 21.7 mag/(square arc
sec). As we discuss below, the total luminosity of these galaxies is related to
their rotational speed.

Spiral galaxies show rapid rotation. The rotational speeds are deduced by
measuring the Doppler shifts of the radiation received from different regions
of the galaxy. The rotational speed of the Milky Way as a function of the dis-
tance, R, from the center is shown in Figure 15.8. The speed first increases and
then becomes approximately constant as a function of R. The main features
of this behavior are illustrated schematically in Figure 15.9. All spiral galax-
ies show this behavior. In the central region, the rotational speed increases
approximately linearly with R. Hence this region rotates almost like a rigid
body. However, at larger distances, the speed approaches a constant value. As
discussed below, the variation in speeds with distance can be used to deduce
the radial dependence of the mass of the galaxy.

We see in Figure 15.9 that the rotational speed V of spiral galaxies ap-
proaches a constant value at large distances. Let us denote this constant value
by Vc. It turns out that the luminosity L of spiral galaxies is closely related
to Vc. One finds

L ∝ V α
c , (15.6)

where the exponent, α, takes a value close to 4. However, its precise value
depends on the filter (B, V, etc.) used for flux measurements. This is called
the Tully–Fisher relationship, after its discoverers. Clearly this relationship
is very important because it allows astronomers to determine the luminosity
of the distant galaxy by a measurement of its rotational speed. Hence the
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spiral galaxies act as standard candles, thus allowing determination of their
distance.

Spiral galaxies are surrounded by a nearly spherically symmetric halo that
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FIGURE 15.8: The observed rotational speed V of the Milky Way as a func-
tion of distance R from center. Data from “www.ioa.s.u-tokyo.ac.jp/∼sofue/
h-rot.htm”.
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FIGURE 15.9: An illustration of the rotational speed V of spiral galaxies
as a function of distance from the center.
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extends much beyond the disk. Here the density of matter is very small in
comparison to the disk. It is populated by globular clusters, which are huge
clusters of very old stars, probably formed at the time of formation of the
galaxy.

The region close to the center has a very high density of stars. It is believed
that a very massive black hole resides at the center of all galaxies. The presence
of a black hole must be deduced indirectly by inferring the total mass contained
within some small radius. For example, in the case of the Milky Way, there
is a very strong radio source, Sagittarius A*, at the center, which most likely
contains a a supermassive black hole, with size many orders of magnitude
larger than the mass of the Sun.

15.3 Evidence for Dark Matter

The dependence of the rotational speed of a spiral galaxy as a function of dis-
tance provides some information about its mass density. These observations
provide evidence for dark matter in the Universe. By dark matter we mean
matter that cannot be detected directly through observations of electromag-
netic radiation at visible or other wavelengths. However, it makes its presence
felt through its gravitational interactions. It is not observable directly because
its interaction with radiation or normal matter, such as electrons and protons,
is very weak. However, because it has mass and energy, it interacts gravita-
tionally. We find that the observed rotational speeds of these galaxies cannot
be explained in terms of the visible matter.

Let’s consider the rotation of a star of mass m, located in the disk of a
spiral galaxy, about the galactic center. We assume that it is located very far
from the center, at a distance R. Let the rotational speed of the galaxy at
this distance be V . The distance R is assumed to be large enough so that the
density of visible matter beyond this point is almost negligible. In this case,
the entire mass M of the galaxy is contained within this region r < R. For
simplicity, we assume that R is large enough so that we can approximate M
as a point mass. Applying Newton’s law,

GMm

R2
=
mV 2

R
. (15.7)

This implies that V ∝ 1/
√
R, in disagreement with the observations that show

that V is constant with R, as shown in Figure 15.9. The only way to explain
this behavior is to postulate the existence of dark matter in the galaxy. We
point out that a measurement of the rotational velocity of a spiral galaxy, at
sufficiently large distance from the center, also gives an estimate of its mass
M through Equation 15.7
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Observations suggest that dark matter is not concentrated in the disk. It is
generally assumed to have a spherically symmetric distribution. Let its density
at distance r be denoted by ρ(r). We next determine the ρ(r) that leads to a
flat rotation curve, that is, V equal to a constant, at large distances. In this
analysis we ignore the contribution due to visible matter. For a test mass m
at r, Newton’s equation implies

GM(r)m

r2
=
mV (r)2

r
, (15.8)

where M(r) is the mass of dark matter contained inside radius r. Because
V (r) is constant at large r, we find that

M(r) ∝ r .

Differentiating this and using Equation 8.9, we find

ρ(r) ∝ 1/r2 . (15.9)

Hence we find that a spherically symmetric distribution of dark matter, whose
density falls as 1/r2, is able to explain the observations.

15.4 Galaxy Clusters

Galaxies themselves are not seen in isolation but are found in groups or clus-
ters. A group is a relatively small collection of galaxies. We are a part of a
group of galaxies called the Local Group. It is a relatively small group whose
diameter is equal to a few Mpc. It contains only three prominent members: the
Milky Way, the Andromeda Galaxy (also called M31), and the galaxy M33.
Besides this, the Local Group contains several smaller objects such as the
Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). Ig-
noring such small objects, Andromeda is the galaxy closest to the Milky Way.
The Local Group is a part of the Local Supercluster, which is a supercluster
of galaxies centered at the Virgo cluster of galaxies, located at a distance of
16.5 Mpc from us in the constellation Virgo. Most of the galaxies in the su-
percluster reside in a small number of clusters, which arrange themselves in
a disk-like structure. A relatively smaller percentage of these clusters lie in
a halo, which forms a roughly spherically symmetric structure. Most of the
space in the supercluster is void. We observe a large number of clusters and
superclusters of galaxies in the Universe. As we observe the Universe over dis-
tance scales much larger than 100 Mpc, we find that, on average, the number
density of galaxies is the same at all positions and in all directions. Hence at
such large distances, the Universe appears homogeneous and isotropic.
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Exercises

15.1 Show that the total luminosity of a galaxy which satisfies the de
Voucouler’s law is given by

L ≈ 7.2πIer
2
e .

You may use
∫ ∞

0

dxx7 exp(−x) = 7! .

15.2 We see only the two-dimensional projected view of the galaxies. Hence it
is useful to define a two-dimensional density profile, after integrating over
z coordinate, taken to be along the line of sight. Assume a spherically
symmetric density profile, ρ(r). Define the projected two-dimensional
profile

σ(s) =

∫ ∞

−∞
dzρ(r) ,

where r2 = s2 + z2 and s2 = x2 + y2. Determine σ(s) for the density
profile

ρ(r) =
C

r2 + r20
.

15.3 The density of visible matter in the Milky Way halo, at large r, can
roughly be described by the formula

ρ(r) =
C

r3.5
,

where C is a constant. What does this distribution predict for the r
dependence of the rotation speed of the galaxy at large distances from
the center? Show that this cannot explain the velocity profile at large
distances from the center.
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Cosmology is based on the general theory of relativity (GTR). The GTR
postulates that space-time is curved and dynamical. In Newtonian mechanics
we think of space-time as a background stage on which particles reside, move
and interact with one another. The space-time itself does not change with
time. Furthermore, it is assumed that the three-dimensional space is described
by Euclidean geometry. Such a space has no curvature. In contrast, Einstein’s
general theory of relativity postulates that space-time is curved. Furthermore,
it is dynamical, that is, we cannot think of it as a background stage. The space-
time itself evolves with time. The gravitational force is a manifestation of the
space-time curvature. The evolution of space-time is determined by its matter
content.

In order to understand what is meant by curvature, let us first take a simple
example of a two-dimensional surface. A planar two-dimensional surface is flat,
that is, has zero curvature. In contrast, the surface of a sphere is curved. One
can understand the difference between the two by trying to roll a plain piece of
paper into a spherical surface. It is simply not possible to do this. In contrast,
one can easily roll that paper into a cylinder. Hence the surface of a cylinder
is also flat.

We will introduce cosmology, assuming some of the basic results from the
general theory of relativity. We will not discuss curved space-time and the
general theory of relativity.

295
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16.1 Euclidean Space

Let us first consider some properties of the Euclidean three-dimensional space.
An important property is that we can use a Cartesian coordinate system
throughout this space. This is the standard coordinate system, defined by
three perpendicular axes, as shown in Figure 3.2, labeled as (x, y, z). Here we
will instead label these coordinates as (x1, x2, x3). Let us consider two points
A and B in this space that have coordinates (x1, x2, x3) and (x1 + dx1, x2 +
dx2, x3+dx3), respectively. The coordinates of these two points are separated
by an infinitesimal interval dx1 along the x-axis, dx2 along the y-axis, and
dx3 along the z-axis. Let us assume that these coordinate intervals are small,
although for a flat space using Cartesian coordinates, this assumption is not
needed. The distance ds between these two points is given by

ds2 = dx21 + dx22 + dx23 . (16.1)

This is also called the line element. A space in which we can use Cartesian
coordinates, with the measure of distance given by Equation 16.1, at all points
is called flat space.

Let us consider any two points in a flat space. We can always join these
points by a straight line. This is the shortest path between the two points.
The length of all other paths is longer. Another important property of a flat
space is that the sum of the angles of a triangle is equal to 180o.

The Cartesian coordinates that we described above form a convenient co-
ordinate system in flat space. However, one is free to use any other coordinate
system that may be convenient. The new coordinates may be any arbitrary
functions of the old coordinates. Hence we can define a new coordinate system
(x′1, x

′
2, x

′
3) such that x′i = fi(x1, x2, x3) for i = 1, 2, 3. For different choice of

coordinates, the coordinate separation between any two points will be differ-
ent, that is, dxi 6= dx′i, in general. However the corresponding distance ds
remains unchanged.

16.2 Curved Space

The simplest example of a curved space is the surface of a sphere. It is a
two-dimensional space. We are interested in its intrinsic properties and not its
embedding in the three-dimensional space. We can imagine a two-dimensional
bug residing on this surface who knows nothing about the third dimension.
We require a two-dimensional coordinate system which can be used to label all
points on this surface. A two-dimensional Cartesian system (x1, x2) is simply
not possible. One possible choice of coordinates is the standard latitudes and
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longitudes or equivalently the angular coordinates (θ, φ) where θ is the polar
angle and φ the azimuthal angle.

The line element of a spherical surface can be written as

ds2 = R2(dθ2 + sin2 θdφ2) (16.2)

where R is a constant, identified as the radius of the sphere. It is not possible
to make any transformation of the coordinates (θ, φ) that can convert this into
the form, ds2 = dx21 + dx22, over the entire surface. This is a general property
of all surfaces or spaces which have non-zero curvature. We emphasize that
the surface of a cylinder does not fall into this class. In order to determine
whether a surface is curved one can compute a measure called the Gaussian
curvature. We will not go into these details here. We only mention that for
a spherical surface, the Gaussian curvature is equal to 1/R2. For a flat space
the Gaussian curvature is zero.

A

B C

FIGURE 16.1: The triangle ABC is formed by three great circles on a spher-
ical surface. These include the equator and two longitudes AB and AC. Clearly
the longitudes meet the equator at right angles, as indicated at B and C. Hence
the sum of the three angles of the triangle, (∠ABC+∠BCA+∠CAB) > 180o.
This indicates the curved nature of the surface. As explained in text, the great
circles are the paths of shortest distance on a spherical surface. Hence these
are equivalent to straight lines.

We next describe a few more properties of curved spaces. The shortest
distance between any two points on a spherical surface is along the great
circle joining these points. Hence if two points lie along a longitude then the
shortest distance between them is the length of the (shorter) segment of the
longitude joining them. If the points lie on different longitudes then one must
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first determine the great circle which joins them. The corresponding length
of the segment of this circle gives the shortest distance between the points.
Hence the great circles on a spherical surface are equivalent to straight lines
on a plane. We may form a triangle on this surface by considering three points,
A, B, C, which are joined together by great circles, as illustrated in Figure
16.1. The sum of angles of such a triangle is found to be greater than 180o,
in contrast to a flat space where it is exactly 180o. This is another property
of curved surfaces. The sum of the three angles of a triangle is not equal to
180o.

16.3 Minkowski Space-Time

Before we discuss cosmology, we review the Minkowski flat space-time. In the
special theory of relativity we learn that space and time cannot be treated
separately. A point in this space-time is called an event. Let us denote the
time and space coordinates of an event by (t, x, y, z). The line element in this
case is

ds2 = −c2dt2 + dx2 + dy2 + dz2 , (16.3)

where (dt, dx, dy, dz) represents the coordinate separation between two events
infinitesimally close to one another and c is the speed of light, which is a
universal constant in the special theory of relativity. It takes the same value
in all frames of reference. As in the case of Euclidean space, ds is a measure
of distance in this space. However, the reader may notice that ds2 can take
both positive and negative values, in contrast to the corresponding measure
in Euclidean space. This property arises due to the negative sign of the time
coordinate. We note that along the path of a light ray, ds2 = 0. Such an
interval is called light-like. The trajectory of any massive particle corresponds
to ds2 < 0. This interval is called time-like. The interval ds2 > 0 is called
space-like.

Consider a particle of rest mass m. In the special theory of relativity, the
rest mass is defined as the mass of a particle when it is at rest. Let ds2 be
the interval between two points infinitesimally close to one another on the
trajectory of a particle that may be at rest or in motion. Such an interval
is necessarily negative. We define proper time τ such that dτ2 = −ds2 > 0.
Clearly, dτ is invariant under Lorentz transformations. It is equal to the time
interval dt in the rest frame of the particle. This follows because dx = dy =
dz = 0 in the rest frame. By the standard time dilation formula, we obtain
dt = dτ/γ in a frame in which the particle is moving with speed v. Here,
γ = 1/

√

1− v2/c2, is called the boost factor.
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16.4 Big Bang Cosmology

Modern cosmology is based on the hypothesis that the Universe is homoge-
neous and isotropic. This means that it appears the same at all points and in
all directions. There is no preferred position or direction in the Universe. This
hypothesis is called the cosmological principle. We note that the Universe in
our vicinity certainly does not appear to satisfy this principle. For example,
the solar system is centered at the Sun and forms a planar structure. As we
go beyond the solar system, we observe galaxies and galaxy clusters, none of
which appear isotropic or homogeneous. This principle is assumed to apply in
a statistical sense on distance scales larger than 100 Mpc. For example, the
mean density of matter, averaged over distance scales of order 100 Mpc, ap-
pears to be approximately the same in all directions and positions. This is the
distance scale at which the Big Bang cosmology is applicable. We also point
out that isotropy and homogeneity apply only in a particular frame called
the cosmic frame of rest. An observer who is in motion with respect to this
frame will not observe an isotropic distribution of matter. Due to Doppler and
aberration effects, the density of matter would appear higher in the direction
of motion, in contrast to other directions. A detailed explanation of this phe-
nomenon is beyond the scope of this book. The Doppler effect also leads to
an anisotropy in the temperature of the CMBR, as discussed later. Here we
will always work in this preferred rest frame, unless stated otherwise.

16.4.1 Cosmological Redshift and Hubble’s Law

The cosmological principle along with the general theory of relativity predicts
that the Universe is expanding (or contracting) with time. This means that
the physical distance between different galaxies is increasing with time. The
expansion was first observed by Hubble in 1929. It was deduced by measur-
ing the shift in wavelength of spectral lines from distant galaxies. One finds
that the lines of distant galaxies have longer wavelengths. This change in the
wavelength is expressed in terms of the parameter z, called the redshift. It is
defined as

z =
λo
λe

− 1 , (16.4)

where λe is the wavelength emitted by a distant galaxy and λo is the cor-
responding wavelength observed at Earth. Sources with redshifts as large as
6 have been observed. Because the galaxy is moving away from us, λo > λe
and z > 0. We can understand this in terms of the standard Doppler effect
(Equation 3.9). If a source is moving away from the observer with speed v,
then

λo
λe

≈ 1 +
v

c
. (16.5)
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Hence we can interpret z = v/c. We clarify, however, that the Doppler effect
generally refers to the shift in wavelength when the source is moving with
respect to an observer in a flat space-time. In the present case, the effect
is caused by the expansion of the space itself. Hence it is an effect caused
by the gravitational force. The expansion is modeled in terms of the scale
parameter a(t), which increases as a function of time. Correspondingly, the
physical distances between distant galaxies also increase.

The measurement of the redshift, z, can be made reliably by observing
several different spectral lines. We can deduce a value of the redshift for each
of these by comparing with the corresponding line observed in a laboratory
transition. For consistency, all of these should give the same value of redshift,
within experimental errors.

The observed redshifts, z, of distant galaxies show a direct dependence on
the distance of the galaxy. This fundamental observation, called the Hubble’s
law, can be expressed as

z =
H0

c
D , (16.6)

where D is the distance of the source and H0 is called the Hubble constant.
The observed value of this parameter is

H0 = 67.80± 0.77 (km/s)/Mpc . (16.7)

The Hubble constant is historically written as

H0 = 100h (Km/s)/Mpc , (16.8)

where the parameter h = 0.6780±0.0077 absorbs the uncertainty in its value.
The Hubble’s law is often expressed in the form v = H0D, where v ≡ cz is
defined in Equation 16.5. We notice that a galaxy at a distance of 100 Mpc is
expected to have a redshift of about 0.02.

The deduction of the Hubble’s law crucially depends on the measurement
of distances of galaxies. As we have seen in earlier chapters, a direct measure-
ment is not possible beyond a distance of about 100 pc. For larger distances,
one has to rely on standard candles, that is, sources whose luminosity can
be deduced. As we discussed in Chapter 14, type Ia supernovae provide very
good standard candles to deduce cosmological parameters.

Hubble’s law shows that all galaxies are moving away from us. If we assume
that the Universe is homogeneous, then observers located in other galaxies
should also see all other galaxies moving away from them at the same rate
as we observe. Hence we conclude that all galaxies are moving away from
one another. Within the framework of the general theory of relativity, this
arises due to the expansion of space. As time increases, the three-dimensional
space expands, leading to an increase in the physical distance between the
galaxies. This is illustrated in Figure 16.2. The dots in this figure are some
representative galaxies. Their positions are measured with respect to a co-
moving grid. The co-moving grid expands with time, such that the position of
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the galaxies relative to the grid remains fixed. Let the distance between two
galaxies in such a grid be r. This distance is called the co-moving distance
and remains fixed with time. The physical distance D between the galaxies is
given by

D = a(t)r , (16.9)

where a(t) is the scale parameter. Hence D increases with time.

time
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FIGURE 16.2: The physical distance between the galaxies, indicated by dots
in this figure, increases proportionally to the scale factor a(t) as the Universe
expands. However the coordinate distance r remains fixed.

The galaxies may also have peculiar velocities. This refers to motion of
galaxies besides the Hubble expansion. These arise due to local effects. The
matter distribution in a small neighborhood of a galaxy is not homogeneous
and isotropic. This leads to a net gravitational force that is responsible for
peculiar motion. The peculiar velocities are relatively small on a cosmological
scale and, to a good approximation, negligible. Due to their peculiar motion,
galaxies move relative to the co-moving grid.

16.4.2 FRW Line Element

The Universe at very large distance scales is well described by the Friedmann-
Robertson-Walker FRW line element, given by

ds2 = −c2dt2 + a2(t)(dx21 + dx22 + dx23) = −c2dt2 + a2(t)dr2 . (16.10)

This gives the “distance” ds between two events that have coordinate sepa-
ration equal to (dt, dx1, dx2, dx3). This differs from the Minkowski space-time
by the presence of the scale parameter a(t), discussed above. The curvature
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of such a space-time is non-zero. However, in this particular case, the three-
dimensional space, at any fixed time, has zero curvature. Cosmological ob-
servations suggest that the Universe is flat, that is, the space part has zero
curvature. The coordinates x1, x2, and x3 are called co-moving coordinates.
The co-moving coordinates of any object do not change with time, as dis-
cussed above. As in the case of the Minkowski line element, ds2 = 0 along the
trajectory of a light ray. Hence in a small time interval dt, a light ray travels
a co-moving distance dr given by

dr = c dt/a(t) . (16.11)

We point out that the physical distance D, given in Equation 16.9, is the
distance two galaxies at some fixed time. It is given by, D =

∫

ds, where ds is
computed at any time by setting dt = 0 in Equation 16.10.

t
o

O

t
e

FIGURE 16.3: The wavelength of radiation increases in proportion to the
scale parameter as the Universe expands.

We next relate the scale parameter to the observed redshift of a distant
galaxy. Let us assume that a distant galaxy emits radiation of wavelength λe
at time te, as shown in Figure 16.3. The rate of expansion is assumed to be
very small so that the scale parameter does not change significantly over one
time period of the wave. At a later time to, this radiation is observed by the
observer O. Due to the expansion of the Universe, its wavelength at this time
is λo. Let the time interval between the emission of two wave crests by the
galaxy be equal to dte and the time interval between these crests according to
the observer be dto. By Equation 16.10, dto/dte = a(to)/a(te). Here we have
used the fact that the co-moving distance between two wave crests does not
change. The frequency of light is inversely proportional to the time period.
Hence the frequency of the emitted wave, νe, is related to that of the observed
wave, νo, by the formula

νe
νe

=
a(to)

a(te)
. (16.12)

The speed of light remains the same at all times. Hence we obtain

λo
λe

=
a(to)

a(te)
. (16.13)

We should have expected this result because all physical distances expand in
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proportion to the scale parameter. We will take to as the current time and set
a(to) = 1. Using Equation 16.4 we obtain

1 + z =
1

a(t)
, (16.14)

where we have set te = t.
We next establish Hubble’s law using the Doppler shift formula, Equation

16.5, valid for small v/c. The speed of a distant galaxy can be obtained by
taking the time derivative of Equation 16.9. We obtain

v = ȧ(t)r =
ȧ

a
D

which is Hubble’s law with v = cz and the Hubble parameter

H(t) =
ȧ

a
. (16.15)

The Hubble parameter H(t) is, in general, a function of time. Its value at
current time is denoted as H0 and is given by Equation 16.7.

16.4.3 Matter and Radiation

The rate of expansion is determined by the energy density and nature of the
matter present. The common type of matter we are familiar with is formed of
atoms and molecules, which typically have speeds much smaller than the speed
of light. Such matter is called nonrelativistic. Its energy density is dominated
by its rest mass energy. A particle of rest mass m has energy equal to mc2.
Hence if the mass density of matter is ρm, then its energy density ρe is equal
to ρmc

2. This applies to all forms of familiar matter, which may be solid,
liquid, or gas. We are interested in matter density averaged over very large
distance scales, on the order of 100 Mpc. The number density of galaxies is
approximately 0.1/(Mpc3). Hence a volume of (100 Mpc)3 contains on the
order of 105 galaxies. For the purpose of determining the overall expansion of
the Universe, we will assume uniform density and ignore fluctuations around
its mean value.

For cosmological purposes, radiation is also considered a form of matter.
The term radiation includes photons as well as other particles that may have
speeds close to the speed of light. Such particles are called relativistic. At
present, the total energy density contributed by radiation is very small. How-
ever, at sufficiently early time, the temperature of the medium was very high
and radiation dominated the energy density of the Universe.

We will assume that matter is approximately at equilibrium and assume
the perfect gas equation of state. The equation of state of a perfect gas of
radiation or relativistic particles is given by Equation 8.53. We express it as

PR =
ρR
3

(radiation or relativistic matter) , (16.16)
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where PR and ρR, respectively, denote the pressure and energy density of
radiation. As the Universe evolved, it cooled. Eventually the nonrelativistic
matter started to dominate. In this case the pressure is negligible compared to
the energy density. In this limit, energy density gets a dominant contribution
from mass energy. Let ρNR and PNR denote, respectively, the energy density
and pressure of nonrelativistic matter. We obtain ρNR ≈ nmc2, where n is
a number density of particles and m their mass. The familiar nonrelativis-
tic matter is formed of atoms or molecules, which themselves are formed of
electrons, protons and neutrons. The dominant contribution to ρNR comes
from protons, and neutrons, whose mass is much larger than that of electrons.
Hence m ≈ mp ≈ mn, where mp and mn denote the masses of the proton and
neutron, respectively. The pressure is given by the ideal gas law. We obtain
PNR = nm < v2 > /3 (Equation 8.41), where kT has been replaced in terms
of < v2 > using Equation 8.69. It is clear that PNR << ρNR. Hence we can
approximate it as

PNR ≈ 0 (nonrelativistic limit). (16.17)

We next determine how the energy density of these different components
changes as the Universe expands. For nonrelativistic matter, this is very sim-
ple. The amount of matter does not change. The volume of space increases as
a(t)3. Hence both the mass density and the energy density decrease as 1/a3.
We can express this as

ρNR =
ρNR0

a3
, (16.18)

where ρNR0 denotes the current value of the nonrelativistic energy density.
For the case of radiation, the wavelength of photons increases in proportion
to a(t). The energy of a photon is inversely proportional to its wavelength and,
hence, the energy per photon decreases as 1/a(t). Furthermore, the number
density of photons decreases as 1/a3 due to an increase in the volume of the
Universe. Hence the energy density of radiation decreases as 1/a4, that is,

ρR =
ρR0

a4
, (16.19)

where ρR0 is its current value.
Before proceeding further, we point out that the equations given above

already reveal some fascinating facts about the Universe. As a(t) increases,
the energy density of nonrelativistic matter decreases as ρNR ∝ 1/a3 and that
of relativistic matter decreases at a faster rate, ρR ∝ 1/a4. At the current time,
ρR is very small. However, because it decreases faster with time, it follows that
at sufficiently early times, it must dominate. The energy density of radiation
is proportional to T 4 (see Equation 4.21). Hence, at an early time, when the
Universe was dominated by radiation, its temperature decreased as

T ∝ 1/a(t) . (16.20)

Hence we deduce that the Universe was hotter at early times. Furthermore,
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even nonrelativistic components, which were in thermal equilibrium with ra-
diation at early times, had the same temperature and cooled at the same rate
as the Universe expanded. At a certain stage, matter (i.e., electrons and pro-
tons) and radiation went out of equilibrium. A little beyond that time, atoms
formed and eventually led to the formation of structures in the Universe.

We can now explain the origin of the name Big Bang. Because the Universe
is expanding, it must have been very small at early times. It was also very
dense and hot. Extrapolated sufficiently back in time, the size becomes almost
zero and the density and temperature extremely large. Hence we can imagine
that the Universe originated in an event called the Big Bang, which attributed
it with such high temperature and density. We can add that there is no real
understanding of the actual nature of this phenomenon. We are only able to
reliably describe the sequence of events starting a little after the Big Bang.

16.4.4 Cosmological Evolution Equations

Cosmological observations suggest that, to a good approximation, the Uni-
verse is flat, that is, the three-dimensional space has zero curvature. In fact,
this approximation holds for almost the entire evolution of the Universe. The
space is flat, that is, has zero curvature, if the total energy density is equal to
the critical density,

ρ = ρcr . (16.21)

If ρ > ρcr, then the curvature is positive and ρ < ρcr leads to negative
curvature. We will use the symbol ρcr for the value of critical energy density
at current time. It is convenient to define the parameter Ω such that

Ω = ρ/ρcr , (16.22)

that is, it is the ratio of the energy density of the Universe at any time to the
critical energy density today. The value of this parameter at current time is
denoted by Ω0. Since the energy density at present is very close to ρcr, we
expect that

Ω0 ≈ 1 . (16.23)

Assuming a flat Universe, the differential equations for the scale parameter
can be written as

(

ȧ

a

)2

=
8πG

3c2
ρ (16.24)

2
ä

a
+

(

ȧ

a

)2

= −8πG

c2
P , (16.25)

where P is the pressure. These equations can be derived using Einstein’s equa-
tions of general relativity, which we shall skip. In Exercise 16.1, we develop a
model of expansion based on Newtonian mechanics. We next use these equa-
tions in order to derive some properties of the expanding Universe. These



306 An Introduction to Astronomy and Astrophysics

equations are valid if the energy density is equal to the critical value. Hence,
using Equation 16.24 we can obtain the value of the critical density today,
ρcr. We find

ρcr =
2H2

0 c
2

8πG
, (16.26)

where we have used Equation 16.15. Using the value of the Hubble constant
H0, we obtain the critical mass density,

ρcr
c2

= 1.87h2 × 10−29 g/cm3 . (16.27)

This is the current density of matter favored by cosmological observations.
However, the density of visible matter in the Universe is far lower than this.
This again indicates the presence of dark matter in the Universe. Recall that
dark matter is also needed in order to explain the rotation curves of spiral
galaxies.

We next solve Equations 16.24 and 16.25 in order to determine the time
evolution of a(t). For nonrelativistic matter, using Equations 16.17 and 16.18,
we obtain

a(t) =

(

t

t0

)2/3

, (16.28)

where t0 is the present time of the Universe and we have set a(t0) = 1. For
relativistic matter, we obtain

a(t) ∝ (t)1/2 . (16.29)

We notice that both for the case of nonrelativistic matter and radiation dom-
inated Universe, ä < 0. Hence, the rate of expansion decelerates in both of
these cases.

16.4.5 Accelerating Universe and Dark Energy

Let us assume that for most of its lifetime, the Universe was dominated by
nonrelativistic matter, including dark matter. The time interval over which
radiation dominated at early times is very small. Hence in Equation 16.28, t0
can be interpreted as the lifetime of the Universe. By differentiating Equation
16.28 with time, we can relate t to the Hubble parameter. This leads to an
estimate of t0 given by

t0 =
2

3H0
. (16.30)

Using the value of H0, this gives t0 = 9.6× 109 years or 9.6 billion years. This
value turns out to be too small. The age of the globular clusters in the Milky
Way is estimated to be about 12.7 billion years. Hence something is wrong
with our model. The globular clusters cannot be older than the Universe. It
turns out that this model, in which we assume dominance by nonrelativistic
matter, also conflicts with other cosmological observations.
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The cosmological parameters can be probed somewhat directly using data
from supernovae type Ia. They have now been observed over very large dis-
tances. The farthest supernova observed so far corresponds to a redshift equal
to 1.7. At such large redshifts, the simple relationship given in Equation 16.6
is no longer valid. In order to get a suitable relationship between distance and
redshift, one has to first define an observable measure of the distance. Recall
that if L is the luminosity of a source, then its flux F at a distance r is given
by

F =
L

4πr2
. (16.31)

This equation is valid in flat space-time. In the present case, the relationship
between flux and luminosity is somewhat more complicated because the space-
time is curved. Let us define a distance, called the luminosity distance dL, such
that

F =
L

4πd2L
. (16.32)

All complications due to the expansion of space are dumped into dL. The
astronomers can measure the flux of a distant source. Hence we can get an
estimate of dL if we can deduce its luminosity.

We next relate dL to the redshift of a distant galaxy. Consider a galaxy
located at a co-moving distance r. Assume that it emits a light wave at time
te that is observed at time to. As discussed earlier, the co-moving distance,
dr, traveled by a light wave in a small time interval dt is equal to cdt/a(t).
Hence, the distance r can be expressed as

r =

∫ to

te

cdt

a(t)
. (16.33)

Let us assume that the galaxy emits photons isotropically in time interval
dte. On a co-moving grid, these photons are distributed over an area 4πr2 at
a co-moving distance r. Hence the flux observed is given by

F ∝ L

4πr2
. (16.34)

Furthermore, each photon is redshifted. Hence its energy is reduced by a factor
a(te)/a(to). The photons emitted in time interval dte will spread out due to
expansion and will be observed in a time interval dto, such that dto/dte =
a(to)/a(te). Hence the flux, that is, the energy observed per unit time per
unit area, is equal to

F =
La2(te)

4πr2
, (16.35)

where we have set a(to) = 1. Comparing with Equation 16.32, we obtain the
luminosity distance

dL =
r

a(te)
= (1 + z)r . (16.36)
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We next express the formula for r in terms of an integral over the redshift.
We first change variables in Equation 16.33 from t to a using

da = aHdt ,

where H is the Hubble parameter. Using Equation 16.14, we change variables
from a to z. We obtain

r =

∫ z

0

cdz′

H(z′)
. (16.37)

In order to proceed further, we need H(z), which depends on the nature
of the matter filling up the Universe. Let us assume that the energy density
of the Universe is dominated by nonrelativistic matter. We rewrite Equation
16.24 as

H2 =
8πG

3c2
ρ .

Dividing by H2
0 , using Equation 16.26, we obtain

H(t) = H0

√
Ω , (16.38)

where Ω is given by Equation 16.22. For the case of the nonrelativistic matter
dominated Universe, ρ = ρ0/a

3 = ρ0(1 + z)3. Hence we set

Ω = ΩM = ΩM0(1 + z)3 ,

where
ΩM0 =

ρ0
ρcr

is the value of ΩM today. For a flat, nonrelativistic matter dominated Universe,
ΩM0 = 1. Hence we obtain

r =

∫ z

0

cdz′

H0(1 + z)3/2
=

2c

H0

[

1− 1

(1 + z)1/2

]

. (16.39)

Using Equation 16.36 we obtain the formula for dL for this model. We can
determine the value of H0 by fitting to the observed flux for supernovae type
Ia.

In Figure 14.3, we show the light curve of a typical type Ia supernova at
z = 0. It shows the variation of intensity in the V band as a function of time.
As discussed in Chapter 14, the peak luminosity of type 1a supernovae is ap-
proximately the same for all supernovae. One does find some spread in the
peak luminosity. It turns out that the peak luminosity is correlated with the
width of the light curve. A supernova with larger width has larger peak lumi-
nosity. This relationship can be quantified and then used to obtain a reliable
estimate of the luminosity of a distant supernova. The extracted luminosity al-
lows us to extract the absolute magnitudeM corresponding to some filter. The
apparent magnitude m corresponding to this filter can be extracted by flux
measurement. The difference, m−M , is the distance modulus. One typically
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measures the distance modulus corresponding to the standard astronomical
filters. Note that the light from a distant supernova is redshifted. Hence if the
flux of a nearby supernova peaks at blue frequency, a similar supernova at
large distance may show a peak closer to red frequency.

The fit of the cosmological model based on nonrelativistic matter to the
supernova data, shown in Figure 16.4, turns out to be not very good. The
goodness of the fit can be quantified by computing a statistical quantity called
χ2 (chi-square). We will not go into these details here. The important point
is that the distant supernovae appear to be dimmer, that is, have a larger
distance modulus, in comparison with what is implied by this fit. Hence these
supernovae are probably further away. These observations were rather unex-
pected and presented a major challenge to the Big Bang cosmology. It was
found that a very good fit is obtained if one introduces an additional parame-
ter, called the cosmological constant, into Einstein’s equations. However, most
cosmologists believe that a proper understanding of this phenomenon is still
lacking.
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FIGURE 16.4: The fit to supernovae type Ia using a nonrelativistic matter
dominated (dotted line) model and a model that includes both nonrelativistic
matter and a cosmological constant (solid line). (Data from Amanullah et al.,
Astrophysical Journal 716, 712 (2010).)

Including the cosmological constant, denoted by Λ, the evolution equations
for a(t) become

(

ȧ

a

)2

=
8πG

3c2
(ρ+ Λ) , (16.40)
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2
ä

a
+

(

ȧ

a

)2

= −8πG

c2
(P − Λ) . (16.41)

Notice that the cosmological constant can be treated as a new form of matter
whose energy density and pressure are related by the formula

P = −ρ , (16.42)

with ρ = Λ. This implies that the cosmological constant has negative pressure.
Physically one can associate the cosmological constant with vacuum energy.
Recall that in mechanics, the absolute value of potential energy is arbitrary.
We usually arbitrarily fix the potential energy at some point. Once this choice
is made, the potential energy for any physical system is fixed uniquely. This
also implies that the minimum value of the potential energy is arbitrary. This
value is exactly what we call vacuum energy. It is the energy (not including
the rest mass energy) that a system of particles would have if all the particles
had zero kinetic energy and were located at the minimum of the potential
energy. In quantum mechanics, it is the energy of the system in its ground
state. This vacuum energy plays no role in physics as long as we ignore gravity.
However, all forms of energy including the vacuum energy contribute to the
gravitational force, or equivalently, the curvature of space-time. Hence the
vacuum energy also contributes to cosmological expansion.

It is thus far not clear whether the additional component required to fit
the cosmological observations is indeed the cosmological constant. However,
it is clear that it must have negative pressure. Hence cosmologists assume the
existence of a new component, which is called dark energy, whose equation of
state is given by

P = wρ , (16.43)

with w < 0. The cosmological constant or vacuum energy is a particular
example of this with w = −1. For the case of pure cosmological constant,
with negligible radiation or matter density, the scale factor is given by

a(t) = a0 exp

[

√

8πGΛ

3c2
t

]

, (16.44)

where a0 is a constant. The term dark suggests that this component has so
far not been observed directly. Furthermore, we know even less about its
properties in comparison to those of dark matter. The main property of dark
energy is that if w < −1/3, it leads to accelerating Universe (ä > 0). This is
easily verified by substituting Equation 16.43 into Equation 16.25. This is in
contrast to what we found for familiar nonrelativistic matter or radiation.

We next describe the cosmic evolution assuming the presence of both dark
energy and nonrelativistic matter. The nonrelativistic matter contains both
dark matter and visible matter. For dark energy we will set w = −1. In this
case, Equation 16.38 modifies to

H(t) = H0

√

ΩΛ +ΩM = H0

√

ΩΛ +ΩM0(1 + z)3 , (16.45)
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where ΩΛ is the additional contribution due to the cosmological constant. It
is simply a constant, independent of redshift. Using Equation 16.23 we obtain

ΩΛ +ΩM0 = 1 .

The fit to supernova data based on Equation 16.45 is also shown in Figure
16.4. We find that this gives a very good fit, supporting the presence of a
cosmological constant or dark energy. The best fit parameters are H0 = 69.9
(Km/s)/Mpc, ΩM = 0.27, ΩΛ = 1 − ΩM . Hence we conclude that the en-
ergy density of the Universe is composed of 73% cosmological constant and
27% nonrelativistic matter. The nonrelativistic matter is predominantly dark
matter. The visible matter contributes less than 5% of the total energy den-
sity. This model of the Universe, based on a cosmological constant, is called
the Lambda Cold Dark Matter (LCDM) model. The value of H0 obtained
by fitting the supernova data is close to the value given in Equation 16.7.
The difference arises because the best value, Equation 16.7, also uses other
cosmological data such as the CMBR.

Remarkably, the LCDM model also solves the problem of the age of the
Universe. Using Equation 16.45, we obtain the following formula for the age
of the Universe:

t0 =
1

H0

∫ 1

0

da

a

1
√

ΩΛ +ΩM/a3
. (16.46)

By performing the integral numerically, we obtain t0 = 14.3 years where we
have used Equation 16.7 for the Hubble constant. This value of the age is
consistent with the age of the globular clusters.

16.5 The Early Universe

At early times, the Universe was hot, with its energy density dominated by
radiation. At the time corresponding to the Big Bang, the temperature was
perhaps such that kT ∼MP c

2, where MP ∼ 1019 GeV/c2 is the Planck mass
and k the Boltzmann constant. The physics at such a high energy scale is
not well known and we are not able to describe the evolution of the Universe
at this time very well. Soon after, it went through a phase of very rapid
expansion, called inflation. Due to rapid expansion the Universe became very
cold. However, after the end of inflation it went through a phase in which it was
reheated and again became dominated by radiation. The temperature at this
stage was very high, corresponding to an energy scale of order kT ∼ 1015 GeV.
In order to get a handle on this scale, recall that kT ∼ 1 eV corresponds to a
temperature of approximately 10,000K. Hence the temperature after reheating
was very, very high. As this high temperature, the Universe was composed of
plasma that may have contained known particles such as electrons, photons,
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along with many exotic particles that have so far not been seen experimentally.
During this phase the evolution is described by Equation 16.29. The physics
of the Universe at T ∼ 1015K, corresponding to an energy scale kT ∼ 100
GeV, is well described by the Standard Model of particle physics. At this
temperature, the plasma would be composed of charged leptons (e−, µ−, τ−),
neutrinos (νe, νµ, ντ ), quarks (u,d,s,c,b), photons, gluons, W±, Z, and their
antiparticles. The top (t) quarks would have decayed by this time.

At T ∼ 1015K, quarks and gluons existed as free particles. As the Universe
cooled further to T ∼ 1012K, a phase transition occurred and free quarks and
gluons ceased to exist. They became confined inside hadrons, that is, particles
such as protons and neutrons. At this stage, the plasma was composed of
photons, electrons, muons, neutrinos, protons, and neutrons. The remaining
particles would have either decayed or formed bound states. The antiparticles
of electrons, muons, and neutrinos would also be present. The antiparticles of
protons (and neutrons) would have disappeared due to annihilations with the
corresponding particles to form radiation, by the process

p− + p+ → γ + γ . (16.47)

The temperature at this time is such that kT << mbc
2, wheremb ≈ mp ≈ mn

denotes the mass of proton, mp, or neutron, mn. The subscript ‘b’ stands for
baryon. Hence photons do not have enough energy to create proton-antiproton
pairs by the inverse process corresponding to Equation 16.47. In contrast,
photons do have enough energy to create electron-positron pairs and, hence,
the process

γ + γ ↔ e− + e+ (16.48)

proceeds in both directions. This maintains both electrons and positrons in
thermal equilibrium. The inverse of this process is called the pair annihilation
process. In equilibrium, both of these processes contribute at the same rate. We
point out that protons and neutrons are nonrelativistic at this temperature,
whereas electrons, muons, and neutrinos are relativistic.

We next describe a very interesting prediction of the Big Bang cosmology.
The process of proton-antiproton annihilation, Equation 16.47, dumps a huge
number of photons in the Universe. This is because at very early time the
density of protons and antiprotons was nearly equal, with a small excess of
protons. This small excess represents a small asymmetry between particles
and antiparticles. Hence after the annihilation process, only a small number
of protons remained. All the remaining proton-antiproton pairs converted to
photons. We point out that if the number of particles and antiparticles were
equal, there would be no matter left today. The presence of matter indicates
a small excess of particles over antiparticles. Hence the pair annihilation pro-
cess predicts a very large number density of photons today in comparison to
protons. As we will discuss, this is in good agreement with the data.

The mass of a muon, Mµ, is such that Mµc
2 ∼ kT , with T ∼ 1012K.

As the temperature falls significantly below this value, muon-antimuon pairs
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annihilate into photons. The pair creation process can no longer contribute.
At the end of this annihilation process, a small number of muons remain,
as in the case of protons. Again, this is because of a small excess of muons
over antimuons present since very early times. As the Universe evolved further
in time, at some stage these muons decayed to electrons and neutrinos, and
disappeared from the cosmic plasma.

Let us now consider the time when the temperature was slightly higher
than 1010, corresponding to kT ∼ 1 MeV. At this temperature the scattering
rate, Γ, of neutrinos with the plasma falls below the expansion rate, that is,
Γ < H(t). Beyond this point, neutrinos fall out of equilibrium with the plasma
and evolve independently. Due to the small scattering rate, their mean free
path becomes very large, comparable with the size of the Universe. This follows
from the inequality Γ < H(t). Notice that τ = 1/Γ is the time interval between
two collisions and τc the mean free path. Furthermore, 1/H is the typical time
scale of expansion of the Universe. It is the time over which its size changes
significantly. Hence c/H provides a rough estimate of the observable size of
the Universe. The constraint Γ < H(t) implies cτ > c/H, which is the result
claimed above. Hence, beyond this time, neutrinos rarely interact with the
plasma particles. Similarly, all other particle species decouple from the cosmic
plasma when their reaction rate Γ < H(t).

At the time of decoupling the neutrinos were relativistic particles described
by the Fermi-Dirac distribution. After decoupling their distribution remains
the same with T ∝ 1/a(t) (see Equation 16.20). The photons remain coupled
to the plasma at this time and decouple much later. Their temperature also
decreases at the same rate. The photon gas is observed today as the cosmic
microwave background radiation (CMBR) with a blackbody temperature of
about 2.73K. Because both neutrino and photon temperatures evolve simi-
larly, we expect the neutrino gas temperature to be also equal to 2.73K. This
is roughly correct with one small correction. After the neutrinos decoupled,
the electron-positron pairs annihilated, dumping their entire energy into the
cosmic plasma. This led to a significant enhancement of the plasma tempera-
ture. The neutrinos that had already decoupled did not get any contribution
from this. Hence their temperature evolved strictly as 1/a, whereas the pho-
ton gas got heated during this process. This leads to a small difference in
temperature between neutrino and photon gases today.

A detailed calculation predicts that the neutrino temperature Tν today is
related to the corresponding photon temperature Tγ by the formula

Tν
Tγ

=

(

4

11

)1/3

. (16.49)

We will skip the proof of this relationship. With Tγ = 2.73K, we find that
Tν = 1.94K. It has not been possible so far to observe the primordial neutrino
gas. This is because neutrinos interact very weakly with matter and are very
difficult to observe. This remains one of the observational challenges of modern
cosmology.
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As mentioned above, the electron and positron pairs annihilated after neu-
trino decoupling, producing photons through the pair annihilation process,

e− + e+ → γ + γ . (16.50)

In analogy with proton-antiproton annihilation, this phenomenon happens
once the energy scale kT << mec

2, where me is the electron mass. At such
low energies, the inverse process, Equation 16.48, is no longer effective. At the
end of this process, a small number density of excess electrons remains.

Furthermore, the fact that at early times, matter and antimatter were
present in almost equal quantities explains the very large number density of
photons in comparison to protons observed today. At various stages during
the evolution of the early Universe, different pairs of particles and antiparti-
cles annihilated to create radiation. This process left behind a small fraction
of particles, which we see today as protons, electrons, and neutrons, either in
the free or bound state. The number of particles present today is equal to the
difference between the number of particles and antiparticles at early times.
We expect this difference to be very small because the theory of fundamen-
tal particles is almost symmetric with respect to the interchange of particles
with antiparticles. This is called the charge conjugation symmetry. This also
predicts that the number density of photons, produced by the annihilation
process, should be very large at the current time. Let ne and n̄e represent the
number densities of electrons and positrons, respectively, at early times. We
expect

ne − n̄e
ne

∣

∣

∣

∣

∣

early

<< 1 . (16.51)

At early time, when electrons and positrons were relativistic, ne is approx-
imately equal to nγ . Hence it is clear that, at the end of the annihilation
process, ne/nγ << 1 because all the pairs would annihilate to produce pho-
tons. Let us assume that the number densities, ne and nγ decreased with
further expansion of the Universe at the same rate. In that case the present
observed ratio of matter particles to photons should be of the same order as
the ratio on the left hand side of Equation 16.51.

Let nb represent the current number density of baryons, which includes
protons and neutrons. Notice that the number of protons and electrons today
must be almost equal to one another because we expect that the Universe is
electrically neutral. Furthermore, the number of protons is of the same order
as the number of neutrons in the Universe. Hence nb is roughly equal to the
current number density of electrons. This implies that the ratio

η = nb/nγ , (16.52)

observed today would be approximately the same as the ratio in Equation
16.51. Let us now estimate this ratio. The number density of baryons in the
Universe is simply equal to the total energy density of visible matter divided by
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the mass of the proton. This is because the mass of electrons is negligible. The
energy density of visible matter is roughly 2% of the critical energy density.
Hence we expect that

Ωb =
ρb
ρcr

≈ 0.02 , (16.53)

where ρb denotes the energy density of baryons. This implies

nb ≈
ρb

mpc2
=

ρcr
mpc2

Ωb . (16.54)

The photon number density is obtained using the Bose–Einstein distribution.
We have

nγ =
gint
2π2~3

∫ ∞

0

p2dp

exp(E/kT )− 1
, (16.55)

where for photons, gint = 2 and the chemical potential µ = 0. We obtain

nγ =
2

π2

(

kT

c~

)3

ζ(3) , (16.56)

where ζ(3) ≈ 1.202 is the Riemann zeta function. Using Equations 16.56,
16.54, and 16.26, we obtain

η = 5.4× 10−10Ωbh
2

0.02
. (16.57)

Hence, as expected, we find that the number density of photons is very large
in comparison to that of protons or electrons. As we discuss below, this has
important implications for several processes in the early Universe, such as
primordial nucleosynthesis, formation of atoms, etc.

16.5.1 Primordial Nucleosynthesis

One of the great successes of the Big Bang model is that it correctly explains
the abundance of light elements in the Universe. As we learned in Chapter 9,
elements up to iron are synthesized in stellar interiors. Elements heavier than
iron are also synthesized in stars under special conditions. However, stellar nu-
cleosynthesis is not able to properly explain the abundance of light elements,
such as 4He, 3He, D, 7Li, in the Universe. Let us first consider 4He. As we
learned in Chapter 9, helium is produced in stellar interiors during the main
sequence phase. However, most of it either is converted to heavier elements
during the giant phase or stays confined inside white dwarf stars. It is not
released into the interstellar medium. Hence if the density of helium in this
medium is negligible initially, it will remain small at all times. Furthermore,
stars take birth in this medium and we would predict negligible helium in stel-
lar atmospheres. This is in contrast with actual observations. The interstellar
medium contains about 28% helium by mass. We also observe that the relative
abundance of 4He seen in the first generation, Population II, stars is about
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25% by mass. The helium abundance of Population I stars is also similar to
this. If stars produced significant amounts of helium, then Population I stars
would have been born in a medium with a higher proportion of this element,
thus leading to higher helium abundance. The present best estimates suggest
that primordial helium abundance lies in the range 23% to 25%. We conclude
that this helium could have only been produced in the early Universe and not
in stellar interiors.

The abundance of other light nuclei such as D, 3He, 7Li is very small. How-
ever, even this small abundance cannot be explained by stellar nucleosynthesis.
For example, all the deuteron (D), which is produced in stars by hydrogen
fusion, quickly gets consumed to form 3He. The deuteron abundance in the
interstellar medium is found to be D/H= 1.6 × 10−5. One can also measure
the primordial abundance of D from the absorption lines formed by clouds at
high redshift in the spectra of distant quasars. This leads to a somewhat higher
value, D/H= 3 × 10−5. The Big Bang cosmology has been very successful in
explaining the relative abundance of D and other light elements.

Let us now deduce the abundance of light elements produced in the early
Universe. Here we will focus primarily on helium. At sufficiently early time,
the density of helium and heavier nuclei was very small in comparison to
that of protons and neutrons. Their density becomes significant only after
the temperature is such that kT < B, where B is their binding energy. The
first nuclei to form are deuteron (D). Heavier nuclei can form only after the
formation of D. Hence this acts as a strong bottleneck, just as in the case of
stellar nucleosynthesis. The binding energy of D is 2.22 MeV, which is very
small. By the time this nucleus forms in substantial quantities, the medium
has cooled so much that only a few light nuclei can form. Recall that the
formation of nuclei heavier than helium proceeds by the triple alpha process.
Due to the strong Coulomb barrier, this turns out to be insignificant in the
early Universe. Furthermore, the time available for nucleosynthesis is very
short due to the expansion of the Universe. The primordial nucleosynthesis
actually starts only when kT is much smaller than the binding energy of D.
This is because of the large value of η, Equation 16.57, which implies that the
number density of photons is much larger than that of protons and neutrons.
The high density of photons with energies of order 1 MeV would quickly break
any D nuclei that may form, thus delaying the onset of nucleosynthesis.

We next determine the equilibrium distribution of protons, neutrons, and
nuclei. These particles are nonrelativistic at the onset of nucleosynthesis. In
this limit, E/kT >> 1, both the Fermi–Dirac and Bose–Einstein distributions
reduce to the Boltzmann distribution. We approximate

E ≈ mc2 +
p2

2m
. (16.58)

The corresponding number density is given by

n =
gint
2π2~3

e(µ−mc2)/kT

∫ ∞

0

p2dp exp[−p2/2mkT ] , (16.59)
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where µ is the chemical potential. This leads to

n = gint

(

mkT

2π~2

)3/2

e(µ−mc2)/kT . (16.60)

The factor gint = 2 for protons and neutrons and 3 for D. Let np, nn, and nD
denote the number densities of proton, neutron, and D, respectively, and µp,
µn and µD their chemical potentials. The dominant reaction that contributes
to the formation of D in the early Universe is

p+ n↔ D+ γ . (16.61)

At equilibrium, µD = µn + µp, because the chemical potential of photons is
zero. We have

np = 2

(

mbkT

2π~2

)3/2

e(µp−mpc
2)/kT ,

nn = 2

(

mbkT

2π~2

)3/2

e(µn−mnc
2)/kT ,

nD = 3

(

2mbkT

2π~2

)3/2

e(µD−mDc2)/kT , (16.62)

where we have approximated mb ≈ mp ≈ mn and mD ≈ 2mb in the coefficient
but not in the exponent. Eliminating µD, we obtain

nD =
3

4
23/2nnnp

(

2π~2

mbkT

)3/2

eB/kT , (16.63)

where B = (mn +mp)c
2 −mDc

2 is the binding energy of D. We next express
this in terms of the mass fractions XD = 2nD/nb, Xp = np/nb, and Xn =
nn/nb. Here the mass of D is approximately 2mH and that of a proton and
neutron approximately equal to mH , where mH is the mass of the hydrogen
atom. Notice that when protons and neutrons are in equilibrium, nb ≈ np+nn
and Xn ≈ Xp ≈ 1/2. We obtain

XD =
24√
π
ζ(3)XnXpη

(

kT

mbc2

)3/2

eB/kT . (16.64)

In Figure 16.5 we plot the ratio XD/(XpXn) as a function of kT . For the
time period corresponding to this plot, Xp and Xn are both of order unity. We
find that the ratio is very small for kT > 0.1 MeV. It becomes close to unity
only at kT ∼ 0.08 MeV. This energy is much smaller than the binding energy
of D. As explained earlier, the reason for the late onset of nucleosynthesis
is the very small value of η. The helium formation starts once the deuteron
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fraction, XD ∼ 0.1− 1. It happens over a very short time interval when 0.05
MeV < kT < 0.09 MeV. The reactions contributing are

D + D → 3He + n ,
3He + D → 4He + p ; (16.65)

D + D → 3H+ p ,
3H+D → 4He + n ; (16.66)

and the reactions involving photon emission

D + n → 3H+ γ ,
3H+ p → 4He + γ ; (16.67)

D + p → 3He + γ ,
3He + n → 4He + γ . (16.68)

These reactions produce predominantly 4He and small quantities of 3H and
3He. In order to compute the 4He abundance, we assume that all the neutrons
present when kT = 0.07 MeV form 4He.
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FIGURE 16.5: The deuteron fraction XD/(XpXn) as a function of kT dur-
ing the early Universe. We find that the amount of deuteron is very small for
kT > 0.1 MeV. Only at kT < 0.1 MeV does XD becomes comparable to Xp.
Hence nucleosynthesis occurs only below this temperature
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The neutrons stay in equilibrium with the cosmic plasma until kT ≈ 0.75
MeV. Their equilibrium with the medium is maintained by the processes

ν + n ↔ p+ e− ,

e+ + n ↔ p+ ν̄ , (16.69)

and the neutron decay process

n→ p+ e− + ν̄ . (16.70)

These processes involve weak interactions. The neutrons decouple when their
reaction rate, Γ, becomes smaller than the Hubble parameter, H(t). At equi-
librium, the ratio of neutron to proton number densities is equal to

nn
np

= e(−mn+mp)c
2/kT , (16.71)

where we have used µn ≈ µp assuming that µe ≈ 0 and µν ≈ 0. The dif-
ference mnc

2 − mpc
2 ≈ 1.29 MeV. At the neutron decoupling temperature,

kT ≈ 0.75 MeV, we obtain, nn/np ≈ 0.18. This leads to Xn ≈ 0.15. Beyond
this time, neutrons propagate freely. The ratio nn/np decreases during this
free propagation due to the neutron decay process. The lifetime of a free neu-
tron is approximately tn ≈ 887 sec. Using this we can compute the neutron
abundance at kT ≈ 0.07 MeV, the temperature corresponding to primordial
nucleosynthesis.

The time elapsed between neutron decoupling and the onset of primordial
nucleosynthesis can be computed using the cosmic evolution equations. Let
us consider the evolution of primordial plasma starting from a temperature
of about 1010K (kT ≈ 1 MeV). At this temperature, the species that are
in equilibrium are photons, electrons, positrons, protons, and neutrons. The
neutrinos have decoupled but are still relativistic. At temperatures of order 1
MeV, protons, neutrons, and nuclei are nonrelativistic. The energy density is
dominated by the relativistic species and is given by

ρ =
gint
2π2~3

∫ ∞

0

Ep2dp

exp(E/kT )± 1
, (16.72)

where the − and + signs correspond to bosons and fermions respectively. Here
we have neglected the chemical potentials, which is a good approximation for
all the species. We obtain

ρ =
gintπ

2

30

(kT )4

(~c)3
for bosons ,

ρ =
7

8

gintπ
2

30

(kT )4

(~c)3
for fermions . (16.73)

The total energy density is obtained by summing over all the species. The
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factor gint is equal to 2 for photons, electrons and positrons, and 1 for each
of the three species of neutrinos and anti-neutrinos. We obtain

ρ =
geffπ

2

30

(kT )4

(~c)3
, (16.74)

where

geff = 2 +
7

8
(4 + 6) = 10.75 (16.75)

sums over the contribution from all the species. Substituting this into Equation
16.24, we can obtain the relationship between time and temperature during
this era. We recall that during the radiation domination phase, a(t) ∝ t1/2.
Hence H(t) = 1/(2t). Using Equation 16.24, we obtain

t =

√

45

16π3geff

√

~3c5

(kT )4G
. (16.76)

This leads to

t = 0.736 sec

(

1 MeV

kT

)2

. (16.77)

We also need this relationship at the time of nucleosynthesis, kT ≈ 0.07 MeV.
By this time the electron-positron pairs have annihilated. Hence now only
the photons and neutrinos contribute significantly to the energy density. The
neutrino temperature, Equation 16.49, is a little lower. We can absorb these
changes in the geff , whose value now is given by, geff = 3.36. Correspondingly,
the relationship between time and temperature becomes

t = 132 sec

(

0.1 MeV

kT

)2

. (16.78)

The time corresponding to kT = 0.07 MeV is 269 seconds. Taking into account
neutron decay, we find that at this time, Xn ≈ 0.11. Let Yp denote the pri-
mordial 4He mass fraction. Using Equation 8.45 with M = nbmH , mH ≈ mb

and assuming that all the neutrons get converted to 4He, we obtain

Yp = 2Xn ≈ 0.22 . (16.79)

A more detailed calculation gives a slightly larger value of about 0.24, which
agrees with the observed value of Yp which lies approximately in the range,
0.23 to 0.25.

16.5.2 Recombination

After the formation of light nuclei, the primordial plasma consists of photons,
electrons, protons, and light nuclei. The protons and light nuclei remain in
equilibrium with the plasma due to Coulomb interaction with electrons. The
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electrons maintain equilibrium due to Compton scattering with photons. As
the temperature cools further, we reach the epoch in which the energy density
of radiation becomes equal to that of matter. Beyond this time, the Universe is
dominated by nonrelativistic matter. A little later, electrons start combining
with protons and nuclei to form atoms. This is called recombination, although
this happens to be the first time in the history of the Universe that the nuclei
and electrons combine to form atoms. This process happens when kT ∼ 0.1 eV,
which is much smaller than the binding energy of atoms. This delay happens
for precisely the same reason as in the case of primordial nucleosynthesis. The
extremely large number density of photons does not allow atoms to form at
higher temperatures. The redshift corresponding to this event is estimated
to be about 1,000. Due to recombination, the free electron density becomes
very small. Hence the Compton scattering rate, which kept the free electrons
in equilibrium with photons, drops below the Hubble expansion rate. The
photons decouple from electrons and propagate freely in space. The medium
becomes transparent to photons. The resulting photon gas is observed today
as Cosmic Microwave Background Radiation (CMBR).

After recombination, the Universe entered the era that is called the dark
ages. During this time, the Universe was filled with neutral light atoms. Hence
it is very difficult to detect any signal from this era. The only possibility is the
21 cm line due to hyperfine splitting of neutral hydrogen. Due to the expansion
of the Universe, this line is redshifted to wavelengths on the order of several
hundred centimeters. There is currently considerable effort to devise methods
to observe this signal.

The dark ages ended after the formation of structures in the Universe. As
the first galaxies appeared, ultraviolet light from the stars ionized the neutral
atoms. This phenomenon is called reionization. The current best estimates
suggest that reionization occurred at z ≈ 6.

16.5.3 Structure Formation

The structures, that is, galaxies, clusters, etc., form due to perturbations
around the uniform background density. We have so far confined ourselves
to perfectly homogeneous and isotropic space-time. The density of matter as
well as the curvature of space-time were assumed to be same at all points
and directions. However, there are fluctuations or perturbations around this
smooth background. These were generated during a very early phase of the
Universe called inflation. These perturbations evolved with time but stayed
relatively small until the end of the radiation dominated phase. The density
ρ(~x) of matter at position ~x, can be expressed as

ρ(~x) = ρ0 + δρ(~x) , (16.80)

where ρ0 represents the smooth mean density, which is independent of po-
sition, and δρ(~x) represents the perturbations. The gravitational attraction
causes the perturbations to grow, whereas the outward pressure causes them
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to decay. This is the same as the growth of perturbations in a cloud of gas and
dust during star formation. The gravitational attraction starts to dominate
during the nonrelativistic matter dominated phase. The perturbations grow to
eventually form structures in the Universe. The theory of structure formation
predicts that

δρ

ρ0
∼ 10−5 (16.81)

at the time when photons decoupled from matter.

16.5.4 Cosmic Microwave Background Radiation (CMBR)

As described above, photons decouple from electrons at z ≈ 1, 000, a little af-
ter recombination. At the time of decoupling, these photons had a blackbody
spectrum with kT ≈ 0.1 eV. Subsequently, the photons propagate freely with
their blackbody temperature decreasing as 1/a. This essentially means that
their wavelengths are redshifted due to expansion. This radiation is observed
today at microwave frequencies and called CMBR. It spectrum matches the
blackbody distribution with T = 2.73K, with very high precision. The tem-
perature is observed to be almost the same in all directions. This provides
considerable justification for our assumption that the Universe is isotropic.

The CMBR temperature is not exactly isotropic. The largest deviation
from isotropy arises due to the peculiar velocity of the Milky Way. It is mov-
ing in some direction due to the gravitational field of the galaxies in our
neighborhood. Furthermore, the solar system is in motion with respect to the
Milky Way center. Hence the observed photon frequencies get shifted due to
the Doppler effect. This leads to a dipole pattern in the CMBR temperature.
In galactic coordinates, the direction of the dipole is found to be l = 264o and
b = 48o. Choosing this to be the z-axis, the resulting CMBR temperature can
be written as

T (θ, φ) = T0 + δTd cos θ , (16.82)

where T0 = 2.73K is the mean temperature, θ the polar angle, and δTd repre-
sents the strength of the dipole. Let v represent the speed of the solar system
with respect to the frame in which the CMBR is isotropic. Then

δTd
T

≈ v

c
∼ 10−3 . (16.83)

The observed value of v = 369 Km/s.
Besides the dipole pattern, CMBR displays anisotropies that arise due to

primordial density fluctuations. The energy density of the photon gas is also
not exactly uniform. Its perturbations are described by an equation analo-
gous to Equation 16.80. As long as the photons remained in equilibrium with
electrons, the photon fluctuations, δρ/ρ0, were of the same order as those of
the matter field. Because the energy density of photons is proportional to T 4,
this implies that δT (~x)/T0 ∼ 10−5. Here T0 is the mean temperature and δT
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represents the fluctuations. After decoupling, the photons propagate freely.
Hence the strength of their perturbations did not change, in contrast to those
of matter perturbations. We observe these photons from our location. Because
the photon gas was inhomogeneous at the time of decoupling, the photons that
we observe from different directions would have a slightly different tempera-
ture. Hence we expect to see a small anisotropy in their temperature. We can,
therefore, express the observed temperature of CMBR as

T (θ, φ) = T0 + δT (θ, φ) , (16.84)

where δT (θ, φ) is a function of the angular coordinates θ and φ. Remarkably
these fluctuations were observed close to the predicted value of δT/T0 ∼ 10−5

by the COBE satellite in early 1990s. The CMBR anisotropies have now been
studied in great detail by WMAP and PLANCK satellites. Their observations
provide very accurate values of the cosmological parameters and find good
agreement with the Lambda Cold Dark Matter (LCDM) model.

This concludes our discussion on cosmology. A more detailed treatment
requires the mathematical structure of the general theory of relativity, which
is beyond the scope of this book.

Exercises

16.1 In this problem we develop a model of expansion based on Newtonian
mechanics. Assume that the Universe is filled with nonrelativistic matter
of energy density ρ. The gravitational force on a test mass m (see Figure
16.6), located at a distance s from origin, is given by

ms̈ = −GM(s)m

s2
,

whereM(s) is the total mass contained within a volume of radius s, and
the negative sign indicates that the force is attractive. Notice that by
spherical symmetry, the mass outside radius s does not contribute.

O

m

F

FIGURE 16.6: The force ~F on a test mass m located at distance s from the
origin O due to a uniform mass distribution in space.
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(a) Set s = a(t)r, where r is fixed and a(t) acts as the scale parameter.
Determine the differential equation for a(t).

(b) Verify that for nonrelativistic matter this equation is equivalent to
the set of Equations 16.24 and 16.25. How does ρ depend on a?

16.2 The wavelengths of some visible lines in helium (HeI), calcium (CaII),
and hydrogen (HI) spectra, as observed in laboratory, are 381.9 nm,
393.3 nm, 396.8 nm, 400.9 nm, and 410.2 nm. The wavelengths of some
of the spectral lines we observe from a distant galaxy are 511.3 nm,
515.8 nm, and 533.3 nm. Match these lines with those observed in the
laboratory and deduce the redshift of this galaxy.

16.3 Numerically verify that the value of the critical energy density is given
by Equation 16.27.

16.4 Verify that for nonrelativistic matter, relativistic matter, and the cosmo-
logical constant, the scale parameter is given by Equations 16.28, 16.28,
and 16.44, respectively.

16.5 Obtain the equation for co-moving distance, Equation 16.37, starting
with Equation 16.33.

16.6 Obtain the formula for luminosity distance dL for a Universe dominated
by (a) nonrelativistic matter and (b) a cosmological constant.

16.7 Verify Equation 16.46, which gives the lifetime of the Universe within
the framework of the LCDM model. Numerically determine the age as-
suming that ΩM ≈ 0.

16.8 Verify that for w < −1/3, the evolution equations, Equations 16.24 and
16.25, lead to accelerating Universe ä > 0.

16.9 Obtain Equation 16.56 by performing the integral in Equation 16.55.
Use the fact that for photons, E = pc. You can use the integral

ζ(x) =
1

Γ(x)

∫ ∞

0

sx−1

es − 1
ds ,

where Γ(x) is the standard Gamma function (Γ(3) = 2).

16.10 Verify that the numerical value of the parameter η defined in Equation
16.52, is given by Equation 16.57.

16.11 Verify Equation 16.64 for the mass fraction of deuteron.

16.12 Obtain the time-temperature relationship, Equation 16.76, during the
radiation dominated era.

16.13 Obtain the relationship, Yp = 2Xn, for the mass fraction of helium
produced during primordial nucleosynthesis.
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17.1 Introduction

Active galaxies are an exotic class of galaxies, whose properties are very dif-
ferent in comparison to normal galaxies. Their most striking feature is their
nuclei, which is very small and extremely luminous. In some cases, the size of
these nuclei may be comparable to that of the solar system. However, their
luminosity is typically larger than that of a whole galaxy. Hence these cores
generate a huge amount of power in a very compact region and are called Ac-
tive Galactic Nuclei or AGNs. The host galaxies of AGNs may be one of the
normal galaxies, such as a spiral, elliptical, etc. These hosts are often difficult
to observe because they are outshined by their nuclei.

The AGNs are so compact that it has not been possible to resolve them,
that is, we are unable to directly measure their size. However, their luminosity
shows a large variation over a relatively short time interval that allows us to
impose an upper limit on their size. Furthermore, we can also estimate a lower
limit on their mass. Such analysis suggests the existence of a very massive
black hole, with mass of order 108 MSun at the center of these objects.

A striking feature of these nuclei is that they emit radiation in a wide range
of frequencies, such as, radio, infrared, visible, ultraviolet, x-rays, and γ-rays.
In many cases, the nucleus appears almost like a star at visible wavelengths. Its
true nature becomes clear only when one determines its luminosity, spectral
lines, as well as continuum emission at different wavelengths. The spectrum
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of a normal galaxy is dominated by absorption lines, produced in stellar at-
mospheres. In contrast, the AGNs display a large number of emission lines.
These can only be produced by atoms and ions in excited states. Hence the
AGN temperature must be very high. In many cases we observe rather broad
emission lines. This broadening can be attributed to Doppler shifts caused by
the large velocities of these ions or atoms in random directions due to high
temperature in AGN atmospheres.

Active galaxies are found to be more abundant at large distances in com-
parison to our local neighborhood. It is useful to keep in mind that when we
observe the Universe at large distances from Earth we get a glimpse into its
structure at early times. This is due to the time that light takes to reach us.
Hence if we observe an object at a distance of 1 Gpc, light that we observe left
the object roughly 3.26 billion years ago. This suggests that in the past, active
galaxies dominated the Universe and for some reason have largely disappeared
in recent times.

17.2 Active Galactic Nuclei: Some Basic Properties

AGNs display a wide range of bewildering phenomena, that have fascinated
astrophysicists for many decades. These objects are extremely luminous, with
their luminosity often surpassing that of a regular galaxy by many orders
of magnitude. This is particularly amazing, given the fact that their size is
very small. Furthermore, they have significant continuum emission over a wide
range of frequencies from radio waves to γ-rays. They display both emission
and absorption spectral lines. Their luminosity also shows a rapid variation
with time.

All these properties indicate the presence of a very compact and highly
active object. The compact nature of this object is deduced from the rapid
time variability. Furthermore, one deduces the mass of this object from its
luminosity. We discuss these details later in this chapter. Here we describe the
basic picture of an AGN that is consistent with observations. The luminosity
produced by this compact object is so large that even nuclear fusion does not
have the efficiency required to generate such high power. The only possible
mechanism is the gravitational attraction of a very massive black hole. The
mass of the black hole is found to lie in the range 106 to 1010 solar masses. The
black hole attracts matter from its neighborhood, which forms an accretion
disk, as illustrated in Figure 17.1. The figure schematically illustrates a central
black hole, surrounded by an accretion disk, both of which may be undergoing
a slow spin. The system emits jets of charged particles, protons and electrons,
in two opposing directions.

The formation of an accretion disk is a phenomenon similar to that dis-
cussed in the case of a binary system, Figure 10.6. However, in that case a
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binary partner feeds matter into a black hole or a very compact object, with
mass on the order of a solar mass. In the present case, the black hole is very
massive. Furthermore, it may be accreting cold matter from all directions. The
matter attracted by the black hole has to pass through the accretion disk. As
it collides with matter in the disk, it generates heat and radiation. This leads
to the extreme luminosity of AGNs in infrared, visible, ultraviolet, x-rays and
γ-rays. Radiation at these frequencies comes directly from the central compact
region of an AGN.

AGNs also emit jets of charged particles that travel very large distances.
The precise mechanism for the formation of these jets is unknown. It is possible
that charged particles may be accelerated to very high energies in an AGN,
perhaps due to time-varying magnetic and electric fields. These fields may be
generated by rotation of the AGN. For example, a time-dependent magnetic
field is generated if the magnetic dipole axis does not align with the rotation
axis. A time-varying magnetic field also creates a time-varying electric field.
These energetic charged particles can be channeled into jets by magnetic field

FIGURE 17.1: Here we schematically show an AGN with a central black hole
and an accretion disk. Two jets of charged particles are emitted in opposite
directions.
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lines, much like the solar wind, shown in Figure 11.6. We point out that
the phenomenon of jet formation is also seen in the case of young stars, as
discussed in Chapter 10.

The high level of activity of an AGN is possible only if a sufficiently high
density of cold matter is available in the vicinity of the black hole. Such con-
ditions might have arisen when the galaxies first formed out of a primordial
medium. As discussed in the previous chapter, galaxies form due to fluctua-
tions in matter density. Regions of large density attract matter and grow. The
central region of these dense structures may eventually evolve into a black
hole. The density of matter surrounding the black hole at this early stage may
be sufficiently high to sustain the level of activity seen in AGNs. The matter
slowly depletes, and eventually the activity reduces to the level seen in normal
galaxies. Hence we expect that active galaxies are the early stages of galaxy
formation. All active galaxies may slowly evolve into normal galaxies, with a
dormant, massive black hole at their centers.

Active galaxies might also arise by a collision between two normal galaxies.
This may lead to a compression and hence accumulation of gas and dust near
the center of the system. The dormant black hole near the center of one, or
both the galaxies might again become active and start behaving as an AGN.
We expect that in this case the structure of the galaxy will be considerably
distorted, which is observed in the case of many AGNs.

Due to the presence of the disk, these objects do not have spherical sym-
metry. They may be symmetric about an axis perpendicular to the accretion
disk. Hence their emission is not expected to be uniform in all direction and
their appearance depends on the angle of observation. This is similar to what
is seen in the case of, for example, spiral galaxies. However, in the present
case, the dependence on the angle of observation appears to be very dramatic,
as we shall discuss later.

17.2.1 Size of AGNs

As mentioned above, AGNs show very rapid fluctuations in luminosity. This
indicates that their size is very small. A significant change in luminosity can
occur only if the change happens systematically throughout the entire source.
A source may have local random fluctuations in emission. When summed over
the entire source, such changes will add up to zero. Consider a source of length
D whose luminosity undergoes a significant change, on the order of 50%, in
time ∆t. The information that this change has occurred propagates along the
source at speed less than c, the speed of light. Hence the information reaches
the opposite end in time greater than D/c. This provides an estimate of the
minimum time over which the luminosity can undergo significant change. This
implies that ∆t > D/c, or equivalently,

D < c∆t . (17.1)
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This gives an upper limit on its size. The time interval ∆t for AGNs is observa-
tionally found to be in the range of an hour to about a month. In Exercise 17.2
you can show that the size corresponding to 1 hour turns out to be smaller
than that of the solar system.

17.2.2 Luminosity

The AGNs are extremely luminous. Their large luminosity allows us to impose
a lower bound on their mass. Consider an object of mass M . There has to be
a limit on the luminosity that it can produce, while maintaining equilibrium.
This is because large luminosity means large radiation flux, which would lead
to large radiation pressure. If the radiation pressure becomes too large, it
might overcome the attractive forces that hold the object together and blow
it apart. The limiting value of luminosity is called the Eddington limit. It is
given by

Lmax =
4πcGM

κ̄
, (17.2)

where κ̄ is the Rosseland mean opacity, discussed in Section 8.6. We obtain
this limit by considering a spherically symmetric object of mass M . The limit
is reached when the radiation pressure near the surface, at radius r, balances
the gravitational attraction. The radiation pressure P and temperature T are
related by Equation 8.54. Using this along with the equation for radiative
transport, Equation 8.25, we obtain

dP

dr
= − κ̄ρL

4πcr2
, (17.3)

where ρ is the density of the medium. Assuming that the dominant attractive
force acting on the object is the gravitational force, the pressure gradient
is given by Equation 8.7. We deduce from Equations 8.7 and 17.3 that the
maximum luminosity for an object of mass M is given by Equation 17.2.
The details of this derivation are left as an exercise. If the luminosity exceeds
this value, then the pressure gradient due to radiation pressure is too large
to be sustained by gravitational attraction and the object will not remain
in equilibrium. Here we have made several assumptions, such as spherical
symmetry. However, Equation 17.2 provides a reliable order of magnitude
estimate in most cases.

At very high temperatures, the medium gets completely ionized and the
dominant contribution to κ̄ comes from Compton scattering (see Section 8.6).
Using the definition of opacity, Equation 7.11, we find that κλ = nσλ/ρ, where
n is the number density. The scattering cross section is given by the Thomson
cross section σT , given in Equation 8.31, which is independent of wavelength.
Furthermore, we assume that the medium is predominantly ionized hydrogen,
which leads to ρ/n ≈ mH ≈ mp. In this case we can express the Eddington
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luminosity as

Lmax =
4πcGMmp

σT

≈ 1.26× 1031
[

M

MSun

]

W ≈ 3.3× 104LSun

[

M

MSun

]

. (17.4)

Hence we find that for a solar mass object, the maximum luminosity it can
produce, in equilibrium, is on the order of 104 times the luminosity of the Sun.
Let us now apply this to the AGN 3C273. It has a luminosity on the order
of 3 × 1012 LSun. This implies that its mass must be larger than 108 solar
masses.

17.2.3 Superluminal Motion

Some of the AGNs show superluminal motion, that is, a part of the object
appears to be moving away at a speed greater than the speed of light. What we
measure is the transverse speed of the object on the sky. How can this speed
exceed the speed of light? Does this violate special relativity? The situation
is explained in Figure 17.2. Consider an AGN located at A, at a distance D
from an observer. Assume that a segment moves away from it toward B at
speed v at an angle θ, as shown in Figure 17.2. Light signal from A, emitted
at time t = 0, reaches the observer at time t1 = D/c. The segment reaches B
after a time interval equal to L/v. Let the light signal from this segment at B
reach the observer at time t2. Using the geometry shown in Figure 17.2, you
can show as an exercise (Exercise 17.4) that

∆t = t2 − t1 =
L

v
− L cos θ

c
. (17.5)
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FIGURE 17.2: A segment of an AGN is seen to move from position A to
B in the sky in time ∆t, at an angle θ with respect to the line of sight.
The object travels transverse distance H, given by, H = L cos θ, where L
is the total distance traveled. (Adapted from D. J. Griffiths, Introduction to

Electrodynamics.)
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According to the observer, the segment travels an apparent distance equal to
H in this time interval. Hence its apparent speed u is

u =
H

∆t
=

v sin θ

1− v
c cos θ

. (17.6)

As an exercise (Exercise 17.5), you can show that the apparent speed is max-
imum when

cos θmax = v/c . (17.7)

The corresponding maximum apparent speed in this case is

umax =
v

√

1− v2/c2
. (17.8)

Hence we find that for v close to c, the apparent speed can far exceed the
speed of light. This happens if θ is very close to zero, that is, the motion is in
a direction close to the line of sight. Hence it is only the apparent speed that
is greater than c and there is no violation of the principle of special relativity.

17.3 Classification of Active Galaxies

The active galaxies are broadly classified as Seyfert galaxies, blazars, radio
galaxies, and quasars. These objects differ in their emission characteristics,
that is, the nature of spectral lines, their overall luminosity, as well continuum
emission at different wavelengths.

17.3.1 Seyfert Galaxies

Most of the Seyfert galaxies are spirals with a core consisting of an AGN. Ap-
proximately 2% of all spiral galaxies are Seyferts. The peculiar nature of their
nuclei was first observed by Carl K. Seyfert in 1943. At visible wavelengths,
these galaxies appear as normal spiral galaxies. However, when viewed at other
wavelengths, we observe a very luminous, unresolved nucleus. These galaxies
are further classified on the basis of their spectral lines into Seyfert 1 (Sy
1) and Seyfert 2 (Sy 2), along with intermediate types such as Seyfert 1.5.
Seyfert 1 galaxies show both broad and narrow emission lines. Assuming that
these lines are broadened due to the Doppler effect, we estimate velocities
of gas particles in the range of 1,000 to 5,000 Km/s in these objects. These
galaxies show strong emission in ultraviolet and x-rays. Their x-ray emission is
also highly variable. In contrast, Seyfert 2 galaxies show only narrow emission
lines, which indicate velocities of order 500 to 1,000 Km/s. Furthermore, these
galaxies show strong infrared emission and may not have high luminosity in
x-rays or ultraviolet.
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Up to now, about 15,000 Seyfert galaxies have been observed. An example
is NGC 5548, also called MrK1509, located at a distance of about 75 Mpc (z =
0.017), in constellation Böotes. It is classified as Seyfert 1.5. The nucleus shows
highly variable emission, both at visible and x-ray frequencies. An example of
Sy 2 is NGC 1068 (Messier 77). It is located at a distance of about 14 Mpc in
constellation Cetus.

17.3.2 Radio Galaxies

Some galaxies have very strong radio emissions, much larger in comparison to
that of normal galaxies. A radio image of these sources typically displays two
widely separated lobes, which may be connected by jets to a central region.
It is believed that the radio emission is powered by an active nucleus that
resides in the core of these galaxies. These objects are called radio galaxies.
An example is Cygnus A, located at a distance of about 230 Mpc (z = 0.056)
in constellation Cygnus. A radio image of this source is shown in Figure 17.3.
The narrow jets consist of high energy electrons emitted by the core in opposite
directions and moving at speeds close to the speed of light. These electrons
most likely originate in the active nuclear region of these galaxies and are
confined to narrow jets by a dipolar magnetic field, aligned parallel to the
jet axis. At large distance from the center, these electrons collide with the
intergalactic medium and generate very strong radio emission. These regions
are identified with the radio lobes, which typically dominate the radio emission
of these objects.

In most cases the host galaxies of these sources are elliptical. Hence if we
view them at visible frequencies, we observe an elliptical galaxy. In many cases
the host galaxy appears highly distorted. This is most likely due to the effect
of other galaxies or due to a merger. The radio component of these objects is
typically much larger than the host galaxy. For example, the two radio lobes of

FIGURE 17.3: The radio galaxy, Cygnus A, imaged at radio frequencies (5
GHz). We observe two very bright lobes connected to a point-like core with
two jets. The radio emission is brightest at the extreme ends of the lobes where
they meet the intergalactic medium. (Image courtesy of NRAO/AUI.)
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Cygnus A extend well beyond the host galaxy into the intergalactic medium.
The distance between the two hot spots, that is, regions of strongest emission
in Figure 17.3, is of the order of 100 Kpc, three times larger than the disk
diameter of the Milky Way.

These sources show a continuum, nonthermal spectrum, characteristic of
synchrotron emission due to high-energy electrons accelerating in a magnetic
field. The spectrum of can be well described by a power law,

F (ν) ∝ 1

να
, (17.9)

where F (ν) is the observed flux at frequency ν and α the spectral index. It
is often possible to fit the spectrum with a constant value of α ≈ 1 over a
limited range of frequencies. Over a larger range, α shows dependence on ν.
The observed spectrum arises due to the integrated emission from a large
number of electrons.

The observed radio flux of Cygnus A at 14.7 MHz is approximately 31, 700
Jy. The spectral index α ≈ 0.7 in the range 10 MHz to 2 GHz. Below 10 MHz,
the flux cuts off sharply and above 2 GHz, the spectral index becomes larger,
α ≈ 1.2. As an exercise (Exercise 17.1), you can use this information to show
that its total luminosity in this frequency range is on the order of 1044 ergs/s.
This is many orders of magnitude larger than the radio luminosity of normal
galaxies and comparable to the total luminosity of the Milky Way, integrated
over all wavelengths.

The strongest radio emission comes from the hot spots in the lobes. These
hot spots are typically seen where the jet of particles meets the intergalactic
medium. This phenomenon may be understood in analogy with the interaction
of the solar wind with the Earth’s magnetic field, Figure 11.6. The magnetic
field in this region is enhanced due to the compression generated by the col-
lision of jet particles with the intergalactic medium. Furthermore, charged
particles cruising nearly parallel to magnetic field lines suddenly encounter
transverse magnetic fields and get trapped, leading to enhanced synchrotron
emission.

In Cygnus A, we observe that one of the jets is much brighter than the
other. In many cases, only one jet is visible and, in some, the jets may not
be seen at all. This can be understood by recalling that synchrotron emission
is dominant in the direction of motion of electrons. The velocity vector of
electrons is nearly parallel to the jet axis. However, they do have a small
velocity component perpendicular to the jet magnetic field, which makes them
spiral around the jet axis. These spiraling electrons emit synchrotron radiation
predominantly along the jet axis. The strength of emission depends on the
angle between the jet axis and the line of observation. The strongest emission is
seen if the jet is pointed directly toward us. This probably explains the strong
emission from blazars, to be discussed later. In the case of radio galaxies, we
may not observe radio waves from jets if the jet axis is aligned at a large angle
to the line of sight.
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17.3.3 Quasars

Quasars have very high luminosity, which is typically much larger than that of
a normal galaxy. They are also the most distant objects seen in the Universe.
Quasars have been observed in the redshift range z =0.056–7.085, and are the
most abundant objects at high redshifts. The closest quasar lies at a distance of
about 200 Mpc. Most are found at distances of order Gpc. More than 100,000
quasars have been observed so far. Their host galaxy is typically an elliptical
galaxy. At Gpc distances, we do not observe many normal galaxies. This may
be partially due to their low luminosity. Furthermore, the fact that quasars
are seen abundantly at high redshifts and none in our vicinity suggests that
they might represent an early stage of galaxy formation.
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FIGURE 17.4: The spectrum of quasar, 3C273, from radio waves to gamma
rays. The vertical, long dashed line shows the position of the visible spectrum.
The slanted, short dashed line corresponds to a spectral index 1, that is, 1/ν,
where ν is the frequency. The data for this plot have been taken from M.
Türler, S. Paltani, and T. J.-L Courvoisier et al., Astronomy and Astrophysics
Supplement, 134, 89 (1999) and S. Soldi, M. Türler and S. Paltani et al.,
Astronomy and Astrophysics, 486, 411 (2008).

At optical frequencies, quasars display a star-like appearance. However,
their spectra are very different from the blackbody spectrum of a star. The
spectrum of a typical quasar is relatively flat and extends over a wide range
of frequencies. In Figure 17.4 we show the spectrum of the quasar, 3C273,
located in the constellation Virgo. We observe a relatively flat spectrum at
radio frequencies. At higher frequencies, we find a power law decay, Equation
17.9, with spectral index α = 1. Due to their star-like appearance, these
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objects are called Quasi Stellar Objects (QSOs), or simply quasars. About
10% of all quasars have a radio galaxy associated with them. These are called
radio-loud. The remaining are called radio-quiet.

The luminosity of quasars shows a very rapid variation in time. It might
change quite significantly within a time interval of a few days to a few months.
This imposes an upper limit on their size on the order of a few light days to
a few light months.

The quasar spectrum displays broad emission lines. In this respect they
are similar to Seyfert 1 objects. They also display absorption lines that are
partially intrinsic to the quasar and partially arise during propagation through
the intergalactic medium. The intergalactic medium at high redshifts or large
distances contains a large number of clouds, which have a high density of
neutral hydrogen, as shown in Figure 17.5. The quasar radiation that we
observe at Earth has to pass through these clouds. These clouds produce
Lyman α absorption line corresponding to the transition from n = 1 to n =
2 states of neutral hydrogen. A cloud at redshift zi will produce a line at
wavelength

λi = λα(1 + zi) , (17.10)

where λα is the wavelength of the Lyman α transition in the rest frame of
the atom. Because there exist many clouds at different redshifts, we would
observe many absorption lines corresponding to the different redshifts of dif-
ferent clouds. This dense collection of observed lines is called the Lyman α
forest. It is of great importance in cosmology because it allows one to study
the intergalactic medium at high redshifts.
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FIGURE 17.5: The radiation emitted by a distant quasar, Q, passes through
many clouds of neutral hydrogen before reaching the observer O. Here the
clouds are shown at redshifts z1, z2, and z3. Each cloud produces an absorption
line whose wavelength is given by Equation 17.10, leading to a Lyman alpha
forest in the observed quasar spectrum.

A very bright and well-studied quasar is 3C273. We have already described
its spectrum in Figure 17.4. Its redshift is 0.158. This implies that it is located
at a distance of about 700 Mpc, which, by quasar standards, is relatively close
to us. The apparent visual magnitude V of 3C273 is 12.8. As an exercise, you
can show (Exercise 17.3) that its visual luminosity is about 3× 1012 LSun or
about 100 times the luminosity of the Milky Way. This is remarkable, given
that its size is of the order of a few light months, much smaller than a parsec.
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17.3.4 Blazars

Blazars show the strongest activity among the AGNs. All blazars have strong
radio emission. Their emission at all wavelengths shows very rapid variation.
In some cases, the time scale of variation is as small as a few hours. They
also show superluminal motion, very high luminosity, and high polarization,
both at radio and optical frequencies. These observations suggest that blazars
might be AGNs, whose jets are pointed close to the line of sight. The jets
contain charged particles moving at relativistic velocities. Due to relativistic
boosting, their synchrotron emission is strongest in the forward direction.
This also explains the superluminal motion seen in blazars. A lump of dense
plasma, which is emitted along the jet pointing toward the observer, will have
an apparent speed much larger than the speed of light, as discussed in section
17.2.3. The rapid time dependence of blazars indicates that the emission comes
from a very compact object, whose size may be on the order of a few light
hours.

17.4 Unified Model of AGNs

The AGNs display a diverse range of properties, as described above. It is
believed that the main features of an AGN are a central black hole surrounded
by an accretion disk, as illustrated schematically in Figure 17.6. The accretion
disk is surrounded by a thick torus that lies in the same plane as the disk.
Due to this torus, the central object is not visible to an observer whose line
of sight lies in this plane. Furthermore, the AGN emits two jets of highly
energetic charged particles perpendicular to this plane. These jets travel very
large distances. The accretion disk as well as the obscuring torus are much
smaller than the host galaxy; however, the jets are typically much larger. As
described above, the jets terminate in the intergalactic medium, where they
emit very strong radio waves in a lobe-like structure. The resulting structure
appears as a radio galaxy.

If we view the object at higher frequencies, we can observe the central
compact region. In particular, if the line of sight is inclined at an angle relative
to the plane of the accretion disk, it looks like a quasar or Seyfert I object. We
point out that quasars and Seyfert 1 objects are somewhat similar in character
in the sense that they are both very bright at optical frequencies and display
broad spectral lines. The main difference between the two is that quasars are
much more powerful. The broad spectral lines result due to emission from the
hot medium surrounding the central region, labeled in Figure 17.6 as Broad
Line Region (BLR). If the line of sight lies close to the plane of the torus,
then the central region is obscured from view. In this case we can only see the
narrow spectral lines formed by cooler medium at larger distances from the
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center and the AGN appears as Seyfert 2 object. Finally the AGN appears as
a blazar if viewed close to the jet axis. Hence the basic picture, illustrated in
Figure 17.6, provides a unified picture of all AGNs.

obscuring

torus

Blazar

Quasar

Seyfert 1

jet

Accretion Disk

BLR

Seyfert 2

FIGURE 17.6: The cross-sectional view of an AGN. The central black hole
is surrounded by an accretion disk and an obscuring torus. The two jets of
charged particles are emitted perpendicular to the plane of the accretion disc.
The central region is surrounded by the Broad Line Region (BLR), which has
high temperature and leads to the formation of broad spectral lines. If this
region is in the line of sight of the observer, then the AGN appears as a Quasar
or a Seyfert 1 object. The torus obscures this hot medium. Hence if the line
of sight is close to the plane of the torus, then we only see narrow spectral
lines formed by cooler medium at larger distances from the black hole. The
AGN appears as a Seyfert 2 object in this case. Finally it appears as a blazar
if viewed directly along one of the jets.

Exercises

17.1 The observed radio flux of Cygnus A is about 31,700 Jy at 14.7 MHz.
It is located at a distance of roughly 230 Mpc. Assume that its flux
satisfies the power law, Equation 17.9, in the frequency range 10 MHz
to 2 GHz, with α = 0.7. Compute its radio luminosity in this frequency
range assuming that it emits isotropically.
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17.2 Determine the upper limit on the size of an AGN whose luminosity shows
a significant change in a time interval of about 1 hour.

17.3 Determine the distance of the quasar 3C273, located at z = 0.158, using
Equation 16.6. Hence determine its absolute visual magnitude, given
that V = 12.8. Finally determine its visual luminosity, assuming that it
radiates isotropically.

17.4 Consider the motion of a segment of an AGN, shown in Figure 17.2.
Let the light signal from A and B reach the observer at times t1 and t2,
respectively. Show that ∆t = t2 − t1 is given by Equation 17.5.

17.5 Determine the angle θ for which the apparent speed u in Equation 17.6
is maximum. You can determine this by requiring that du/dθ = 0.

17.6 Following the steps explained in the text, derive the Eddington limit,
Equation 17.2, on the luminosity of an object of mass M .



Appendix

Fundamental Constants and

Conversion of Units

Gravitational constant G = 6.67384× 10−11 m3/(Kg · s2)
Planck’s constant h = 6.6261× 10−34 Kg ·m2/s
~ = h

2π
Boltzmann constant k = 1.38× 10−23 Kg m2/(K · s2)
Stefan-Boltzmann constant σ = 5.670× 10−8 W/(m2· K4)
speed of light c = 2.9979× 108 m/s
mass of proton mp = 1.6726× 10−27 Kg
mass of electron me = 9.1094× 10−31 Kg
Mass of Sun MS = 1.9891× 1030 Kg
Mass of Earth ME = 5.972× 1024 Kg
Radius of Sun RS = 6.95500× 108 m
Luminosity of Sun LS = 3.846× 1026 Joules/s
1 Joule (J) = 107 ergs
1 eV = 1.6022× 10−19 J
1 year ≈ 3.156× 107 s
1 parsec = 3.086× 1016 m
1 A. U. = 1.496 ×1011 m
1 Jansky (Jy) = 10−26 W/(m2 ·Hz)
1 barn = 10−28 m2

1 Pascal (Pa) = 1 N/m2 = 1 Kg/(m · s2)
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